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ABSTRACT

Summary: Meta-analysis across genome-wide association studies
is a common approach for discovering genetic associations.
However, in some meta-analysis efforts, individual-level data cannot
be broadly shared by study investigators due to privacy and
Institutional Review Board concerns. In such cases, researchers
cannot confirm that each study represents a unique group of people,
leading to potentially inflated test statistics and false positives. To
resolve this problem, we created a software tool, Gencrypt, which
utilizes a security protocol known as one-way cryptographic hashes
to allow overlapping participants to be identified without sharing
individual-level data.

Availability: Gencrypt is freely available under the GNU general
public license v3 at http://www.broadinstitute.org/software/
gencrypt/

Contact: joelh@broadinstitute.org

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

Genome-wide association studies (GWASs) have identified over
1000 genomic loci associated with numerous diseases and traits
(Hindorff et al., 2009). These associations are often discovered
by meta-analysis of summary statistics from multiple, independent
cohorts. One key concern of this type of approach is that the
same individuals may be present in multiple cohorts, especially
if the cohorts recruit from overlapping regions. The presence of
duplicate individuals in multiple studies may affect meta-analysis
results, producing inflated test statistics and spurious associations
(Lin and Sullivan, 2009; Newman et al., 2001). However, sharing
individual-level data across research groups is often not permissible
due to Institutional Review Board (IRB) restrictions, thus inhibiting
researchers from directly assessing whether individuals are present
in multiple datasets (‘overlapping individuals’). To address this
issue, we have created a software suite, Gencrypt, which takes
advantage of a security protocol known as one-way cryptographic
hashes.

One-way cryptographic hashes are a form of security algorithms
that alter input in such a way that the resulting output bears
no resemblance to the original content (referred to as ‘digesting’

*To whom correspondence should be addressed.

the input), and attempt to produce a unique output for each unique
input (referred to as a ‘collision’ when this fails (Burr, 2006)).
Cryptographic approaches have already successfully been applied
to other fields in biology, such as DNA forensics (Bohannon
et al., 2000). The advantages of using such an algorithm in the
context of GWASs is that the original genotype specificity is
kept, but the privacy that is necessary to maintain when using
IRB and consent-form protected data are not compromised. As
a result, we can use one-way cryptographic hashes on genetic
information, and compare the resulting outputs against one another
to securely ascertain identical individuals between datasets used in
GWAS:s.

2 IMPLEMENTATION

Gencrypt uses Perl v2.8.94 and operates on PLINK (Purcell et al.,
2007) formatted files (.ped and .bim). It separates each individual’s
genetic information into groups of SNPs, and hashes each group
one at a time. SNPs are hashed in a random order generated
in-code from a user-provided seed value, and the number of SNPs
included per hash is also defined by the user. The default, and
recommended, one-way cryptographic hash algorithm used is SHA-
256 (Eastlake and Hansen, 2006), a NSA developed algorithm
that remains unbroken and has an exceedingly low likelihood of
producing a collision. Gencrypt also supports WHIRLPOOL and
MDS5 (Barreto and Rijmen, 2000; Rivest, 1992), alternative one-way
cryptographic hash algorithms available at the user’s discretion. The
output file produced contains rows of hashes representing the same
sets of grouped SNPs for every individual. Gencrypt then takes two
of these output files and compares their rows of hashes against one
another, printing out pairs of individuals who have high percentages
of identical hashes. It is then suggested that these pairs may be
overlapping individuals. However, it is necessary to confirm that the
output files being compared were originally created using the same
set of SNPs, the same SNP order, and the same number of SNPs per
hash. To accomplish this, Gencrypt constructs a simulated positive
control individual who is homozygous for the reference allele at all
SNPs used and includes this individual at the beginning of every
hash output file. When comparing these hash output files, positive
controls created from the same set of SNP parameters should produce
100% identical hashes, thus confirming the same SNPs, SNP order
and SNP hash sizes were used.

The number of SNPs used per hash is set by the user, but we
recommend a lower bound of 150 to ensure data security. One
of the main ways to bypass the security SHA-256 offers is by
hashing all possible genotypes that could exist for a given set of
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SNPs until a hash output of interest is recreated, thus revealing the
original genotypes. The efficiency of this brute force approach scales
inversely with the number of SNPs included per hash—the more
SNPs there are, the more computationally intractable it becomes
to test all possible combinations. To find where this threshold of
SNP group size may be, groups of different numbers of SNPs were
hashed via SHA-256 1x10° times on a virtual machine running
CentOS 5.5 x86_64 with 3 AMD Opteron Processors @ 2.3 GHz
and 8 GB ram, using Perl 5.8 with the Perl module Digest::SHA.
Doing so took 12, 13 and 14 seconds for SNP group sizes of 50, 100
and 150, respectively. By extension, given the number of possible
genotype combinations that SNP groupings of these sizes contain
(350, 3100 ang 3150), it would take on average this same machine
1.48x10'!, 1.05%10% and 7.63x 1078 years to hash all these SNP
genotype combinations. While there may be ways for a malicious
script to intelligently cut down the number of genotype combinations
that need to be tested, we believe these times are large enough to
suggest hashes produced from 150 SNP groupings are sufficiently
secure. Therefore, the recommended number of SNPs users should
include per hash group is 150.

A potential problem that arises from using these many SNPs
per group is the high likelihood of including at least one missing
genotype per hash. Missing data are problematic because, given a
hash that would otherwise be identical between two overlapping
individuals, missing genotypes in either individual will lead to
different hash outputs, thus producing false negative comparisons.
In an effort to deal with this problem, Gencrypt uses the known
alleles at the missing SNP site and recreates the current group of
SNP genotypes with all three possible genotypes the missing SNP
could have contained (Bohannon et al., 2000). This produces a total
of 3" hashes for a single SNP group, where M is the number of
missing genotypes originally in the group of SNPs being hashed.
The maximum number of accepted missing genotypes per hash is
set by the user, up to a limit of four. When the number of missing
genotypes exceeds the user-defined threshold, the current group of
SNPs being hashed is exited and a ‘0’ is put in the place of a hash
output. Itis thus treated as a missing hash, and provides no data in the
downstream comparison procedure. The recommended number of
missing genotypes users should accept is two. This should produce
at most nine different possible genotype groupings given a set of
SNPs, which at the recommended SNP group size of 150 SNPs
does little to infringe on the specificity required by the program to
work correctly, but does allow realistic levels of missingness to be
handled.

Given the set of SNPs that overlap the datasets being compared,
there are multiple recommendations for choosing which SNPs to
use in Gencrypt. SNPs should be chosen such that the minor allele
frequency is between 40% and 50%. Using SNPs with the most
variability provides Gencrypt with greater power. Gencrypt attempts
to take into account strandedness based on the input .bim file, so
SNPs whose alleles are either A and T, or G and C, should be avoided
due to ambiguous strandedness. Additionally, SNPs should be used
that minimize the amount of missing information whenever possible.
The recommended total number of SNPs Gencrypt should be run
on is 20000. This number is kept low in order to facilitate users
identify SNPs present in the studies being compared, since these
studies may be based on different platforms. Given 20 000 SNPs,
computational runtime is currently ~n2/600 seconds, where 7 is the
number of samples being analyzed, suggesting that comparing two

samples with sizes over 100 000 may be computationally intensive.
There is no limit to the number of SNPs being used, although
run time increases linearly with the number of SNPs, and there is
no reason to go above 20000. As is shown below, using 20 000
SNPs gives Gencrypt enough data points to successfully identify
overlapping individuals between studies. Including more SNPs if
available can increase Gencrypt’s accuracy, but users should not use
fewer than 20 000 SNPs. It should be noted though, as is also shown
below, Gencrypt successfully identifies overlapping individuals
even without any specific choices regarding SNP selection.

3 RESULTS

We tested Gencrypt on two datasets derived from real genotype data.
The first test dataset was based on African American individuals
collected from Maywood, IL and genotyped on the Affymetrix 6.0
SNP array (Kang et al., 2010). A total of 743 individuals were broken
into two subsets of 421 and 422, with 100 individuals overlapping
between the two groups. Twenty thousand SNPs were randomly
chosen from a full set of 859332 SNPs available as a test of the
program’s robustness to methods of SNP selection, and to show
Gencrypt’s utility with a small number of SNPs used. A variety of
SNP groupings per hash were tested, ranging from 10 SNPs per
hash to 150 SNPs per hash. To test the performance of Gencrypt
with a fixed rate of missingness, missing genotypes were given
a randomly chosen genotype based on the missing SNP’s alleles,
individuals were included in both ‘halves’ of the dataset, and then
1% of genotypes were removed randomly across all individuals. For
every SNP grouping tested, all 100 duplicate pairs of individuals
were identified. Additionally, when fewer than 40 SNPs per group
were used per hash, other familial relations were picked up, such
as first-degree relatives. However, using <40 SNPs per hash is not
recommended due to the potential insecurity hashes based on SNP
groupings of these sizes have. When >50 SNPs per group were used,
none of the 177 562 non-duplicate pairs of individuals produced a
spuriously overlapping hash. For groups of 50, 100 and 150 SNPs,
the percentages of identical hashes for duplicate individuals ranged
from ~50% to ~100% (Supplementary Fig. S1). While including
more SNPs per hash does decrease the total number of identical
hashes found between two overlapping individuals, using 150 SNPs
per hash still produces >50% of total hash comparisons per duplicate
pair as being identical.

To test Gencrypt’s performance with the addition of genotyping
error, a random 0.1, 0.2, 0.5, 1 and 2% of SNPs in both halves of
the Maywood data had a single allele altered (‘miscalled’) in order
to simulate a range of genotyping error rates. These datasets were
then run through Gencrypt using a hash group size of 150 SNPs. For
genotyping error rates of 0.1, 0.2 and 0.5%, all duplicate individuals
were still identified (with decreasing amounts of overlapping hashes
between identical individuals). A total of 99 out of 100 individuals
were identified with 1% genotyping error, and 15 out of 100
individuals were identified with 2% genotyping error (Supplemental
Fig. S2). While Gencrypt is robust to low, and realistic, levels of
genotyping error, SNPs should still be selected to minimize the
effects of genotyping error.

The second dataset used was the publicly available US GoKinD
study (Mueller et al., 2006). A group of 1825 individuals from
the USA and Canada with long-term type 1 diabetes, these were
genotyped on the Affymetrix 5.0 SNP array and five duplicate pairs
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Table 1. US GoKinD IBD estimates and identical hashes percentages for
known duplicates

Pair of duplicate individuals IBD estimates Identical hashes (%)

1 0.9997 91.7
2 0.9997 95.5
3 0.9995 94.0
4 0.9925 27.8
5 0.9748 6.02

Shown are IBD estimates and identical hash percentages for the five known duplicate
pairs from the US GoKinD data identified by Gencrypt. Percent identical hashes
represent the total number of hash outputs that are shared between the individuals in
each pair. IBD estimates were calculated using PLINK (Purcell ez al., 2007). Lower IBD
estimates and percent identical hashes are the results of higher levels of missingness
within those individual pairs.

of individuals, genotyped separately, had been identified in the QC
process. In this case, missing data were maintained as is to test the
performance of Gencrypt in a real dataset. Twenty thousand SNPs
were randomly extracted from the full dataset of 233 100 SNPs, and
size groupings of 150 were used. The resulting output was compared
against itself, with results between people of the same individual IDs
dropped and not considered duplicates. For three of the five known
duplicate pairs, >93% of their hash outputs were identical (Table 1).
The other two pairs of duplicate individuals were still detected, with
28.1 and 6% of hash outputs being identical. In each of these two
pairs, one of the two input genotypes had missingness rates >1%
(1.3 and 1.23%). Despite the relatively low proportion of identical
hash outputs, these five pairs were the only pairs identified with any
duplicate hashes among the 1.7 x 100 pairs compared, demonstrating
the high specificity of Gencrypt.

4 SUMMARY

In summary, our program, Gencrypt, successfully secures and
compares individual-level data in order to identify overlapping
individuals in different genotype datasets. The program maintains
the security necessary to handle individual-level data, while also
retaining the specificity and sensitivity needed to identify identical
individuals. Additionally, while individual IRB opinions may vary,
one IRB consulted on this matter agreed this approach would
likely be a feasible way for identifying overlapping samples for
the purposes of subsequent meta-analyses, in situations where

unencrypted individual level data would not be immediately
sharable. Therefore, this program allows researchers to share
individual-level data without infringing on IRB guidelines and to
remove duplicate individuals from their respective studies.
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