CONTENTS

Methods Summary

Supplementary Methods

Supplementary Tables 1-13

Supplementary Figures 1-3

Supplementary Methods Tables 1-3

Supplementary Note 1. Author contributions 2. Acknowledgments

Methods Summary

The primary meta-analysis (Stage 1) included 46 GWA studies of 133,653 individuals. The insilico follow up (Stage 2) included 15 studies of 50,074 individuals. All individuals were of European ancestry and >99.8% were adults. Details of genotyping, guality control, and imputation methods¹⁻³ of each study are given below and in Supplementary Methods Table 1-2. Each study provided summary results of a linear regression of age-adjusted, within-sex Z scores of height against the and imputed SNPs. an inverse-variance meta-analysis was performed in METAL (http://www.sph.umich.edu/csg/ abecasis/METAL/).

Validation of selected SNPs was performed through direct genotyping in an extreme height panel (N=3,190) using Sequenom iPLeX, and in 492 Stage 1 samples using the KASPar SNP System. Family-based testing was performed using QFAM, a linear regression-based approach that uses permutation to account for dependency between related individuals⁴, and FBAT, which uses a linear combination of offspring genotypes and traits to determine the test statistic⁵.

We used a previously described method⁶ to estimate the amount of genetic variance explained by the nominally associated loci (using significance threshold increments from $P < 5 \times 10^{-8}$ to P < 0.05). To predict the number of height susceptibility loci, we took the height loci that reached a significance level of $P < 5 \times 10^{-8}$ in Stage 1 and estimated the number of height loci that are likely to exist based on the distribution of their effect sizes observed in Stage 2 and the power to detect their association in Stage 1 (see ref. 7). These analyses, as well as gene-by-gene interaction, dominant, recessive, conditional analyses, and pathway analyses are described in more detail below.

Empirical assessment of enrichment for coding SNPs used permutations of random sets of SNPs matched to the 180 height-associated SNPs on the number of nearby genes, gene proximity, and minor allele frequency. GRAIL text-mining and MAGENTA pathway-based methods have been described previously^{8,9}. To assess possible enrichment for genes known to be mutated in severe growth defects, we identified such genes in the OMIM database (**Supplementary Table 10**), and evaluated the extent of their overlap with the 180 height-associated regions through comparisons with 1000 random sets of regions with similar gene content (<u>+</u>10%).

Supplementary Methods

1. Primary genome-wide association meta-analysis (Stage 1)

In Stage 1, we combined the height summary statistics from 46 genome-wide association (GWA) studies in a meta-analysis of 133,653 individuals (60,587 males and 73,066 females).

1.1 Description of individual cohorts and genotyping methods

Descriptive characteristics, study design, sample size, sample quality control (QC) and anthropometric measurement technique for the studies included in Stage 1 are provided in **Supplementary Methods Table 1.** All individuals were Caucasians of European ancestry. Approximately 45% of the individuals were male, and the ages ranged from 14 to 103 years (99.7% of the samples were \geq 18 years old). All participants provided written informed consent and the studies were approved by the respective Local Research Ethics committees or Institutional Review Boards.

Details on the genotyping platform used and genotype quality control procedures employed for each study are presented in **Supplementary Methods Table 2**, while the basic anthropometric measures are summarised in **Supplementary Methods Table 3**.

1.2 Imputation

All cohorts were genotyped using commercially available Affymetrix (Affymetrix, Inc., Santa Clara, CA, USA), Illumina (Illumina, Inc., San Diego, CA, USA) genotyping arrays, or custom Perlegen (Perlegen Sciences, Inc., Mountain View, CA, USA) arrays. Quality control was performed independently for each study. To facilitate meta-analysis, each group performed genotype imputation using BIMBAM¹, IMPUTE², or MACH³ and genotypes from the Phase II CEU HapMap¹⁰. Each imputation software estimates an overall imputation quality score for each SNP. For example, IMPUTE calculates the 'proper info' statistic which is a measure of the observed statistical information for the estimate of allele frequency of the SNP, while MACH calculates the 'rsq_hat', which is the estimated r² between each imputed genotype and its true underlying genotype. Study-specific details are presented in **Supplementary Methods Table 2**.

1.3 GWA analyses in individual cohorts

Details on study-specific analysis software are summarized in **Supplementary Methods Table 2.** Each GWA study tested association between each imputed or genotyped SNP and sexstandardized height, assuming an additive inheritance model and adjusting for age and other appropriate covariates specific to the study (e.g. genotype-based principal components). Studies with unrelated individuals tested association under a linear regression framework. Studies with related samples used variance component or other linear mixed effects modeling to account for relatedness in the regression. The uncertainty of the imputed genotypes was taken into account in the association analysis using methods appropriate for the imputation software used.

The genomic control (GC) inflation factor was calculated for each of the GWA scans separately. The average GC inflation factor was 1.03 (**Supplementary Methods Table 2**). Genomic control correction was applied to results for each study prior to meta-analysis by multiplying SNP standard errors by the square root of the inflation factor.

1.4 Quality control checks of individual studies

Where applicable, the Stage 1 studies calculated separate summary GWA data in males and females and disease cases and controls. Except for studies with related individuals, we used the sex-

specific summary results. Each file going into meta-analysis had the following information (columns): SNP, strand, N (sample size), effect allele (allele to which regression coefficient refers), other allele, EAF (effect allele frequency), imputation (posterior probability of imputed genotype, available from some programs), information type (imputation software used), information (imputation quality scores), *P*-value, beta (regression coefficient), standard error, and NxMAF (sample size multiplied by minor allele frequency). Each file was processed through a cleaning script that performed several quality checks, including calculating the number of markers, ranges of test statistics, the genomic correction inflation factor, and NxMAF. From each study we excluded monomorphic SNPs and SNPs with poor imputation quality: rsq_hat < 0.3 (BIMBAM and MACH) or proper info < 0.4 (IMPUTE).

1.5 Meta-analysis of GWA studies

A total of 2,836,010 autosomal SNPs were meta-analyzed across 98 input files (many of the 46 cohorts had separate male-female and/or case-control files). We did not apply a minor allele frequency cut-off, but we did apply an arbitrary cut-off of NxMAF > 3 (equivalent to a minor allele count of 6) to guard against extremely rare variants present in only one or two samples (possible genotyping/imputation errors or private mutations), for which regression coefficients are not estimated well using the standard statistical methods employed in most GWA statistical programs. We used the inverse-variance fixed effects meta-analysis method to combine the results from the individual studies. For comparison purposes, we also performed a sample size weighted Z-score-based fixed effects meta-analysis. The correlation coefficient between the log_{10} of the *P*-values of the inverse variance and sample size weighted meta-analysis was 0.99. SNP selection for follow-up was based on the meta-analysis of the inverse variance meta-analysis results. Meta-analyses were performed using the software program METAL (www.sph.umich.edu/csg/abecasis/metal).

1.6 Overall genomic control correction

After genomic control applied in each study the overall genomic control inflation factor (λ_{GC}) for the meta-analysis was 1.42. The possibility that such high inflation is due to effects of population stratification or genotyping biases alone is unlikely, considering the different results presented in Supplementary section 4 which argue against this. In an attempt to identify other sources for such inflation, we removed all SNPs within 1Mb from the leading SNP in loci with SNPs reaching *P*<5x10⁻⁸, which yielded a similarly high λ_{GC} =1.33. Next, in a simulated phenotype dataset we evaluated the potential role of multiple causal variants failing to reach genome-wide significance. Using a model comprising 120,000 subjects, 294,831 SNPs, and 1000 causal variants, the λ_{GC} increased in a near linear way from 1.15 to 1.32, as heritability (h²) increased from 0.2 to 0.8. Alternatively, increasing the number of causal variants from 100 to 4000 while keeping heritability constant (at 0.52) increased the λ_{GC} from 1.1 to 1.6 (see ref. 11). The latter observed data are consistent with a model containing many causal variants that are in LD with multiple SNPs resulting in inflated test statistics. Although our data imply that a second GC correction on the meta-analysis statistics may be overly conservative, we decided to apply anyway a second genomic control correction to the meta-analysis standard errors and P-values.

1.7 Selection of SNPs for subsequent analyses

SNP selection criteria for validation by genotyping, *in silico* replication, and all additional analyses and simulations, based on the results of Stage 1 GWA meta-analysis, are described below.

2. *In silico* follow-up (Stage 2)

2.1 SNP selection

We took forward for replication 309 SNPs. These included the 207 index SNPs representing each of the 207 2Mb loci reaching $P < 5 \times 10^{-6}$ in Stage 1 and 102 SNPs that lie within the same 2Mb windows as the 207, but which were poorly correlated ($r^2 < 0.05$) with the index SNP in CEU HapMap II samples. No minimum sample size was used for SNPs taken forward for replication, although we note that the minimum N for the 207 variants taken forward from Stage 1 to Stage 2 was 78,550 (for SNP rs11714558 that reached Stage 1+2 *P*-value of 1.7×10^{-10}). Subsequent analyses are based on the index SNPs from the 207 loci and the 19 SNPs within the 2 Mb windows that were confirmed to be independent by the conditional analysis described below.

2.2 Description of Stage 2 populations

Our *in silico* replication (Stage 2) included 50,074 individuals (12,651 males, 37,423 females) from 15 additional GWA studies. Approximately 26% of the subjects were male (one large study was entirely female), and ages ranged from 17 to 113 years (all but 5 individuals were \geq 18 years old). Brief study descriptions, details on sample quality control, genotyping and imputation methods, and descriptive statistics, are provided in **Supplementary Methods Tables 1-3**.

2.3 Quality control checks of individual studies in Stage 2

The Stage 2 studies provided the same summary GWA statistics as Stage 1 studies, but only for the requested 309 SNPs. In addition to the QC checks performed in the stage 1 studies (section 1.4 above), we checked the direction of effects for the 309 SNPs in replication studies compared to the overall effects in the Stage 1 meta-analysis. In only one of the cohorts (Sorbs), fewer than 50% of the SNPs had effects in the same direction (47% for males, N=371; 50% for females, N=536). As expected, the largest study showed greatest consistency with the stage 1 meta-analysis results: 98% of SNPs in the same direction in the WGHS, N=32,099). We meta-analyzed these studies in METAL assuming a fixed effects model. When we examined the heterogeneity between Stage 2 studies, only one SNP (rs7567288) had a heterogeneity *P*-value smaller that that expected by chance ($P_{het} = 5.6 \times 10^{-6}$) (see **Supplementary Table 1**).

3. Meta-analysis of Stage 1 and Stage 2

The overall meta-analysis combined Stage 1 and Stage 2 results for the 309 SNPs using a fixed effects model. No SNP showed evidence of heterogeneity between Stage 1 and Stage 2 after accounting for the number of tests performed, and only a single SNP had the opposite direction of effect in Stage 2 compared to Stage 1. We report results of fixed-effect meta-analyses only, considering that low evidence of heterogeneity was observed across the 180 SNPs that reached overall genome-wide significance (no SNPs with $l^2>50$ and there were only 8 with $l^2>25$).

3.1 Age and sex-specific analyses of associated signals

We also performed sex-specific analyses of the associated signals and observed no differences between their effects in males compared to females (**Supplementary Table 1**). Because of the wide age range in our GWA studies (**Supplementary Methods Table 3**), we performed a sensitivity analysis by splitting the Stage 1 samples into two approximately equally sized groups around the overall mean age. There was no evidence that any of the 180 effect sizes for the index SNPs were stronger in either the younger half or older half of studies – 84 SNPs were stronger in the older half (P=0.65).

4. Validation by genotyping and population stratification analyses

4.1 Imputation validation

To validate genotype imputation, we directly genotyped 27 height associated SNPs from the 207 loci in 492 subjects from the WTCCC-T2D study. These 27 SNPs were tested because they were not present on any of the most commonly used arrays (used by >2 studies) and did not have any perfect directly-typed proxies (HapMap r^2 =1). We also genotyped a random subset of 18 additional height associated SNPs from these 207 loci in the same samples. Genotyping was performed by Kbioscience (Herts, UK) using a KASPar-based singleplex assay (details of which are available on their website www.kbioscience.co.uk/chemistry/chemistry_Kasp_intro.htm). Forty-three SNPs passed genotyping quality control (HWE *P*>0.01; genotype success rate > 0.9; duplicate error rate <0.5%). We assessed imputation quality by determining the correlation between the directly ascertained genotypes and the genotype dosages produced by IMPUTE (the imputation program used in WTCCC-T2D). We then compared the observed R² to the proper_info statistic produced by IMPUTE (which is essentially a predicted R² between imputed genotype and actual genotype). The correlation between the predicted and the observed R² was high for both the random set of SNPs (*r*=0.92) and for SNPs that were not well captured (*r*=0.84). This suggests that imputation uncertainty has been appropriately accounted for in our analyses.

4.2 Direct genotyping in subjects from tails of height distribution

For additional validation, we genotyped randomly chosen SNPs representing 33 of the 207 associated loci in an independent samples of 2,181 European-American and 1,009 Polish subjects from the tails of the height distribution (5-10th and 90-95th percentile). These height case-control samples and the genotyping methods have been described previously¹². For both panels, all individuals were self-described "white" or "Caucasian." For the US panel, all subjects were born in the US, and all of their grandparents were born in either the US or Europe. All subjects in the Polish panel were born in Poland, and all grandparents were born in Europe or Russia. All subjects gave informed consent, and approval was obtained from the Institutional Review Board of Children's Hospital, Boston. Statistical analysis was performed using a Cochran-Mantel-Haenszel test, as implemented in PLINK⁴. The data set was stratified according to the country of origin of the grandparents to account for population stratification within the European American height panel¹².

Power to replicate the direction of effect of the top 180 height SNPs in the extreme height panel was calculated using the Genetic Power Calculator (http://pngu.mgh.harvard.edu/~purcell/gpc/) based on the following assumptions: a sample size of 3,190 equally divided between individuals in the lower tail (5th-10th percentile) and the upper tail (90th-95th percentile) of the height distribution, variance explained between 0.005-0.3% of the height variation (consistent with our effect size estimates of Stage 2 data, using the equation from quantitative genetics $\sigma_g^2 = 2^*p^*q^*\alpha^2$, where σ_g^2 is the additive genetic variance, p and q are the allele frequencies, and α is the effect size in SD units), and 3 different minor allele frequencies. Under these assumptions, power is minimally affected by minor allele frequency.

Variance explained	MAF=5%	MAF=25%	MAF=50%
0.005%	56%	56%	56%
0.01%	62%	62%	62%
0.05%	88%	88%	88%
0.1%	97%	97%	97%
0.2%	>99%	>99%	>99%
0.3%	>99%	>99%	>99%

4.3 Family-based association analyses

The family-based analysis performed to assess the influence of population stratification as a potential source of false positive associations in the discovered 180 loci, comprised the Framingham Heart (FramHS) and the Erasmus Rucphen Family-based (ERF) studies. The design of the studies has been described elsewhere^{13,14}. The family-based analyses was performed in FramHS (n=5,510) using the QFAM --within procedure from PLINK⁶, running 100,000 permutations to account for the dependence between related individuals. Effect sizes and directions in FramHS were the betas reported by PLINK from the within component but p values were empirical, based on the permutation testing. The extended pedigree of ERF was broken into nuclear families (totaling 1,826 individuals) and analyzed with FBAT⁵ which uses a linear combination of offspring genotypes and traits to determine the test statistic. For imputed SNPs, only those with MACH rsq hat>0.3 were analyzed, using the best guess genotypes from dosages (for FramHS, directly genotyped proxies were also analyzed for comparison and gave similar results). P-values were meta-analyzed using a weighted Zscore-based meta-analysis implemented in METAL; if data were only available from one study, the Pvalue from that study was used. Weights were defined based on effective sample size (actual sample size/lambda, where lambda is the genomic control inflation factor calculated from the GWA data of the family-based samples when ignoring relatedness). The direction of the effect allele in the FHS/ERF meta-analysis was compared to that observed in the GIANT meta-analysis using an exact sign-test statistic based on a binomial distribution. The average estimated effect sizes were essentially identical in the GIANT meta-analysis and the FramHS family-based sample (Supplementary Table 3), suggesting that there is minimal if any inflation of the GIANT effect sizes due to stratification.

4.4 Other population stratification analyses

We checked if the 180 height-associated variants included ancestry informative marker (AIM) SNPs previously identified as highly informative of the sub-structure in European populations. We tested the correlations between height loci and 683 AIMs from 3 different sources^{15,16,17}. These included AIMs from both the HLA and lactase loci. The largest HapMap CEU r^2 correlations between height SNPs and AIMs were observed for the *GDF5* and *EFEMP1* variants ($r^2 = 0.3$ and 0.35, respectively). All other pairwise correlations, including those at the HLA locus, had $r^2 < 0.2$.

We also assessed the absolute values of EIGENSTRAT¹⁸ loading scores along the principal component of ancestry that corresponds roughly to the North-South intra-European axis that is correlated with height⁶ (absolute values of loading scores are a measure of allele frequency differentiation along this axis). The absolute values of loading scores for the height-associated SNPs was not significantly greater than those of 1,000 sets of allele frequency matched SNPs (*P*=0.08). We also compared F_{st} values (a measure of the proportion of genetic diversity due to differences among populations) for the 180 SNPs with sets of matched SNPs and the F_{st} values of the height-associated SNPs were not different when calculated by cohort, although they were nominally significantly higher (*P*=0.04) when grouped by country. Together with the family-based analysis, these results strongly suggest that the observed associations with height are unlikely to be appreciably affected by population stratification.

5. Percentage variation explained and number of loci

5.1 Estimation of variance explained and polygene analysis

We used a method recently proposed by the International Schizophrenia Consortium⁶ to evaluate the amount of phenotypic variance explained by our associated loci in an independent validation set including the Fingesture (Finland), RS-II & RS-III (Netherlands), GOOD (Sweden) and QIMR (Australia or UK origin) studies. To avoid the influence of potential cryptic relatedness between discovery and validation set, a "leave one out" analysis was performed, namely excluding in the

discovery set in turn, all studies from one of the four European countries of the validation set (Finland, Netherlands, Sweden and UK).

The method followed three steps: 1) selection of markers to build a prediction model, 2) scoring each individual based on model and 3) estimation of variation explained using the scores as predictor.

First, we re-ran the meta-analysis using the "leave one out" approach and selected the SNPs that were genotyped in each validation study. For each of these four meta-analysis, a list of independent SNPs associated with height at various *P*-value thresholds (from $P<5\times10^{-8}$ to P<0.05) was computed (using the clumping procedure implemented in PLINK, with an LD-based threshold of $r^2 \ge 0.05$, and a physical distance of 1 Mb from the top hit).

Second, using the selected SNPs from the revised meta-analyses described above, we performed profile scoring for each individual of the five validation studies as implemented in PLINK, where:

Score_i= $\sum_{j=1 \text{ to } m} b_j x_{ij}$, where m= number of SNPs b_j =effect of allele at locus *j* x_{ij} =number of reference alleles of individual *i* at locus *j*

Third, the measure of variance explained (adjusted R^2) is estimated from a linear regression model incorporating the score as the predictor and the age-adjusted standardized height residuals as outcome.

This approach was applied for the estimation of variance explained by the 43 previously published loci, the discovered 180 genome-wide significant loci and the polygene results incorporating different sets of markers at different significance thresholds.

5.2 Prediction of number of susceptibility loci

We utilized a new method by Park et al.⁷ to estimate the number of susceptibility loci that are likely to exist based on the distribution of effect sizes observed for established height loci and the power to detect those effects in the original scan. To be conservative and obtain unbiased estimates of the effect sizes, we only utilized the loci that reach a significance threshold of $P < 5x10^{-8}$ in the Stage 1 meta-analysis and were replicated in Stage 2. The Stage 2 replication data was used to estimate the effect sizes for these loci. Power was calculated based on the sample size for Stage 1 accounting for the number of SNPs that could be identified with the particular effect size. Only SNPs that had a power of at least 1% were used in the predication. One outlying SNP was removed from analysis due to a very small effect size. The phenotypic variance explained was estimated by summing the product of each effect size and the number of loci predicted with that particular effect size. The genetic variance explained was estimated assuming heredity accounts for 80% of the variance in height. A parametric bootstrap method was used to obtain an estimate of the variability of the estimated number of loci.

6. Gene by gene (GxG) interaction, dominant and recessive analyses

6.1 Associated loci analyses

To perform the GxG, dominant and recessive analyses for just the associated loci, each individual study extracted genotype imputation dosages for each of the 207 lead SNPs from the Stage 1 meta-analysis (based on 2Mb distance pruning; $P < 5x10^{-6}$). These dosages were also used for the conditional analysis described below.

An R-script (available on request) was provided to each individual study and was run using the extracted dosages. The allele coding was such that the height increasing allele (based on the Stage 1 meta-analysis) was always the dosage increasing allele (*i.e.* the height increasing allele was coded as allele 2). For the additive dosage and pairwise interaction (Y=b0+b1.A+b2.B+b3.AB+e; Test of b3 = 0) analyses, the dosages were then regressed against residuals of sex-standardized Z-score height,

adjusted for age and appropriate covariates (e.g. principal components), as with the primary GWA study, under the appropriate models. For the additive best-guess (performed for quality control purposes), recessive, dominant and dominance deviation analyses "best guess" genotypes were assigned based on genotype dosage, and these genotypes were similarly regressed against Z-score height under the appropriate model.

We meta-analysed individual study results using METAL. We performed meta-analyses for the additive, dominant, recessive, dominant deviation and pairwise interaction terms. We excluded SNPs from individual studies where NxMAF < 10 and/or imputation quality was < 0.4. We also re-ran the meta-analyses excluding SNPs with a NxMAF < 30 and imputation quality < 0.9, because deviation from additivity is harder to detect if the genotype has not been accurately imputed. The results were essentially the same. As an additional quality check we compared the additive dosage and additive best guess results from this meta-analysis to that from obtained from the primary Stage 1 meta-analysis files, and the correlation were very high (r>0.99). Results for the single SNP models, and the top results from the GxG interaction analysis are presented in **Supplementary Table 5 and 6**.

6.2 Genome-wide joint effect analysis

For the genome-wide analysis we used 10,618 individuals from four WTCCC studies (T2D, CAD, HT, NBS) and the EPIC-obesity study where we had access to individual level genotype data and study and sex-standardised, age-adjusted height Z-scores. All the studies were genotyped using the Affymetrix 500K platform (Affymetrix, Inc., Santa Clara, CA, USA). After quality control (including genotype success rate >95%; MAF>1% and HWE *P*>0.0001), 343,249 autosomal SNPs were used in the analysis.

As a genome-wide pairwise interaction analysis was not computationally feasible we performed two separate analyses. First, we performed a pairwise analysis of all SNPs with individual SNP P<0.01 with each other (Y=b0+b1.A+b2.B+b3.AB+e; Test of b3 = 0). Second, we performed a genome-wide pairwise analysis testing the full model (an 8 d.f. model). SNP pairs generated here will include those driven by main effects as well as interaction. Therefore, we removed the 9 strongest single SNPs which accounted for a large fraction of the associated pairs, and assessed additive by additive interaction of the remaining pairs with a joint effects $P<1x10^{-8}$ using PLINK. A total of 371 pairs of SNPs with an additive by additive interaction $P<1x10^{-5}$ were taken forward into replication in 16,100 samples from 4 cohorts, 3 of which (Rotterdam, CoLaus, DGI) were genotyped on the Affymetrix 500K platform (Affymetrix, Inc., Santa Clara, CA, USA). The fourth replication study, CGEMS, was genotyped on the Illumina platform (Illumina, Inc., San Diego, CA, USA), and where a SNP was not available an $r^2 > 0.8$ proxy was used. Of the 371 SNP pairs that were taken forward into replication, none showed strong evidence of replication (top $P_{\text{Replication}} = 0.01$; top $P_{\text{Overall}} = 1x10^{-6}$; N~26,000).

7. Conditional analyses

To perform the conditional analysis, individual Stage 1 studies repeated their genome-wide analysis, this time including a set of 225 imputation dosages as covariates (those from the 180 SNPs representing the novel loci, plus 27 SNPs from the remaining loci reaching P<5x10⁻⁶ in Stage 1 and an additional 18 SNPs with P<8x10⁻⁶). For quality control purposes, the files obtained from each of the individual studies were put through the same checks as for the Stage 1 analysis (described in section 1.4). Additional checks were performed to ensure that each of the 225 conditioned SNPs was no longer associated with height (all P>0.2) and that SNPs outside the 225 conditioned loci had similar P-values and effect sizes to the primary Stage 1 analysis. After these quality checks, nearly 80% of the Stage 1 samples ereailable for the meta-analysis, which was performed in the same way as the primary Stage 1 meta-analysis (including a NxMAF>3 cut-off and double GC correction).

8. Functional variant analyses

8.1 eQTL analysis

We examined the association between the 180 height associated SNPs and expression of nearby genes in two different tissues: lymphocyte and osteoblast.

8.1.1 Lymphocyte eQTL analysis

As described previously¹⁹, peripheral blood lymphocytes were transformed into lymphoblastoid cell lines for 206 families of European descent, totaling 830 parents and offspring. Using extracted RNA, gene expression was assessed with the Affymetrix HG-U133 Plus 2.0 chip. Genotyping was conducted using the Illumina Human1M Beadchip and Illumina HumanHap300K Beadchip, and imputation performed using data from Phase II HapMap CEU population. SNPs were tested for *cis* associations (defined as genes within 1 Mb) and trans associations, adjusting for non-genetic effects in the gene expression value. Only cis associations that reached a *P*<6.8x10⁻⁵ (or FDR 1%) are included in the **Supplementary Table 7**. The p-value cutoff corresponding to a 1% FDR was estimated by permuting the data while maintaining the correlation of gene expression among family members, the linkage disequilibrium structure among SNPs, and correlation of expression between different genes, and comparing the distribution of p-values for all SNP-probe pairs within 1Mb. A total of 47 out of 180 height SNPs were associated with cis-eQTLs compared to 20 expected by chance assuming a FDR of 1%.

8.1.2 Osteoblast eQTL analysis

Human primary osteoblasts (N=104) derived from Swedish unrelated donors were cultured under four different conditions (PBS control; dexamethasone; BMP2 treated; PGE2 treated). Global gene expression was measured using the Illumina HumanRef-8 vs.2 Expression BeadChip. Expression profiles for each treatment were performed in biological replicates (independently derived primary lines) and averaged. Genotyping was performed using the Illumina HumanHap550K platform and imputation carried out using MACH based on HapMap CEU population. The height SNPs were tested for cis associations (±100 kb flanking the gene) as well as trans associations using MACH2QTL.

Allelic expression association mapping was carried out using a novel method, which allows measurement of cis-regulatory variation in genome-wide manner with minimal impact from transacting or environmental effects and consequently detects 5-10-fold more functional variation in local control of gene expression as compared to similarly sized eQTL studies²⁰. The allelic expression mapping dataset used in this comparison are from CEU HapMap lymphoblastoid cell lines. Only cis associations that reached a P<4.0x10⁻⁴ (or FDR 5%) are included in the **Supplementary Table 7**.

8.1.3 Liver, omentum, and subcutaneous fat eQTL analysis

The liver tissue was taken from 567 Caucasian patients post mortem or undergoing bariatric surgery at the Massachusetts General Hospital (Boston, MA) as described previously²¹. Subcutaneous fat was acquired from 610 of these patients and omental tissue from 742 of these patients. RNA was isolated from the tissues and gene expression was measured using a custom Agilent 44,000 microarray composed of 39,280 oligonucleotide probes. DNA was also extracted and genotyping was conducted using the Illumina 650K platforms followed by imputation of the common SNPs in the Phase II HapMap CEU population. Each SNP was tested for *cis* associations with genes within 1Mb using linear regression adjusting for age, race, gender, and surgery year. Trans eQTLs were also tested. Only cis associations that reached a P<6.0x10⁻⁶ (or FDR 5%) are included in the **Supplementary Table 7**.

8.2 Non-synonymous enrichment analysis

For all 180 height SNPs, we retrieved all proxy SNPs in linkage disequilibrium ($r^2 \ge 0.8$ in HapMap phase II CEU) and annotated them according to whether they were missense, nonsense or neither (**Supplementary Table 8**). Annotation was based on the NCBI build 36.1. In total for the 180 height SNPs, we identified 2,550 proxies, including 0 nonsense and 31 missense SNPs. We repeated this analysis using 1,000 sets of 180 SNPs that were matched based on allele frequency (\pm 2.0%), nearby number of genes (\pm 10% of seed SNP count), and gene proximity (\pm 20kb). Among these sets, the ranges for the number of proxies, nonsense SNPs, and missense SNPs were, respectively, 2566-4640, 0-1, and 8-49. After accounting for the number of proxy SNPs in each set, there were only four sets with a ratio (number of nonsynonymous SNPs / total number of proxies) equal or above the ratio observed for the 180 height SNPs (ratio: 0.0122, range of ratios observed in matched sets: 0.0024-0.0133). Similar results were obtained using a logistic regression framework, where control SNPs were matched only on allele frequency but the other matching parameters were used as covariates; here the "exposure" is being a height-associated SNP and the "outcome" is having a missense SNP as a proxy.

8.3 Association with other traits

We downloaded from the NHGRI GWA study catalogue (http://www.genome.gov/26525384; accessed on 12th February 2010) all SNPs associated with diseases and traits other than height at genome-wide significance level of $P < 5 \times 10^{-8}$. We then identified all SNPs that mapped within 1Mb of at least one height SNP and had some correlation (HapMap CEU $r^2 > 0.1$) with the index height SNP for each of the 180 associated loci. There were 22 such overlapping loci, some associated with multiple other traits and diseases (**Supplementary Table 9**). At 6 of the loci the height and 'other' trait SNP were either identical or strongly correlated ($r^2 > 0.8$). For one of these loci, *LIN28B*, the height effect may be secondary to the large effect on pubertal timing, but the remaining five are likely to represent true pleiotropic effects.

9. Biological enrichment analyses

9.1 OMIM analysis

We searched the Online Mendelian Inheritance in Man (OMIM) database and identified 241 genes that underlie human syndromes characterized by abnormal skeletal growth (**Supplementary Table 10**). The gene list was initially obtained using search keywords 'short stature', 'overgrowth', 'skeletal dysplasia', and 'brachydactyly', and was manually curated blindly to our results. We then grouped the 180 height-associated SNPs into 175 non-overlapping gene regions (to avoid double counting), containing a total of 652 genes. For each region, we set the genomic boundaries using linkage disequilibrium cutoffs ($r^2 \le 0.3$ from the index height SNP) and then next recombination hotspots. Although these 175 regions contained only ~3.3% of all human genes, they included 21 genes from the curated OMIM height gene list (8.7%). We assessed the significance of this result by permutation: we generated 1,000 sets of 175 regions with similar gene content (±10%) and counted, in each set, the number of OMIM height genes was 8 and the range was 1-19 (empirical *P*-value for an overlap of 21 OMIM genes is *P*<0.001).

9.2 Text-mining using GRAIL

The GRAIL algorithm was recently described⁸. As in the OMIM analysis, we used LD and recombination hotspots to define boundaries on the left and right of each height index SNP. This identified 652 genes in 175 regions (five regions were overlapping when using our criteria to define genomic interval around height index SNP).

9.3 Pathway analysis

We applied an adaptation of the gene set enrichment analysis (GSEA) framework (Meta-Analysis Gene-set Enrichment of variaNT Associations, MAGENTA⁹) to the height meta-analysis to determine whether the 180 height SNPs cluster near genes that belong to specific biological pathways and potentially to discover new pathways that may be enriched for modest height associations not yet identified. Specifically, for each gene in the genome we calculated a corrected gene association Pvalue based on the most significant SNP height association *P*-value of all SNPs in the gene region (110 kb upstream and 40 kb downstream to gene's most extreme transcript start and end sites, respectively), accounting for confounding effects such as gene size, number of SNPs per gene and linkage-related properties. Genes were grouped into pathways using annotations from the KEGG, PANTHER, INGENUITY and Gene Ontology databases. KEGG, PANTHER and INGENUITY downloaded Molecular Signatures pathways were from the Database (MsiaDB. http://www.broad.mit.edu/gsea/msigdb/collections.jsp), PANTHER molecular function gene-sets were downloaded from the PANTHER website (http://www.pantherdb.org/), and Gene Ontology biological process and molecular function categories were downloaded from the Gene Ontology website (http://cvsweb.geneontology.org/).

For each gene set, enrichment of highly ranked gene scores above the 95th percentile of all gene scores in the height meta-analysis was evaluated compared to 10,000 randomly sampled gene sets of identical size from the genome. A false discovery rate (FDR) was also calculated for each gene set gs, as the fraction of all randomized gene sets generated across all GSEA tests (10,000 permutations times the total number of real gene sets tested) whose 'leading edge fraction' was equal to or more significant than that of the given gene set gs, divided by the fraction of real gene sets tested whose leading edge fraction was equal to or more significant than that of gene set gs. The 'leading edge fraction' is defined here as the fraction of genes in a given gene set whose gene p-values exceed the 95th percentile of all gene p-values in the height meta-analysis, normalized, as follows, to account for differences in gene set size across the real and permuted gene sets: the mean leading edge fraction of all randomized gene sets of identical size to gene set gs was subtracted from the leading edge fraction of gene set qs, and the resulting value was divided by the standard deviation of the leading edge fractions of all randomized genes sets of identical size to gene set gs. FDR was calculated for each database separately. In cases where the estimated FDR was larger than 1, FDR was set to 1. This may occasionally occur for gene sets at the tails of the GSEA p-value distribution, partly due to the fact that gene sets in a given database are not completely independent.

Results from this analysis show strong enrichment for genes that belong to the hedgehog signaling pathway (nominal GSEA P=0.0009, FDR=0.078) the histone molecular function category (nominal GSEA P=0.0001, FDR=0.0028), and growth and development-related gene-sets (nominal GSEA P=0.0001-0.002, FDR=0.07-0.17), many of which are near the top GIANT height SNPs. In total, there were 17 pathways, including the TGF-beta pathway, 14 molecular functions and 98 Gene Ontology categories, such as anatomical structure morphogenesis, heart morphogenesis, insulin receptor substrate binding, and mammary gland development, that were nominally significant (P=0.05) in our GSEA using MAGENTA (**Supplementary Table 12**)

10. URLs

Bayesian Imputation Based Association Mapping, BIMBAM,

http://quartus.uchicago.edu/~yguan/bimbam/index.html; population stratification detection software, EIGENSTRAT, http://genepath.med.harvard.edu/~reich/EIGENSTRAT.htm; genotype imputation program, IMPUTE, http://www.stats.ox.ac.uk/~marchini/software/gwas/impute.html; Markov chain haplotyping package, MACH, http://www.sph.umich.edu/csg/abecasis/MACH; MACH2QTL, http://www.sph.umich.edu/csg/abecasis/MACH/download; pedigree analysis package, MERLIN, http://www.sph.umich.edu/csg/abecasis/Merlin; meta-analysis tool for GWASs, METAL, http://www.sph.umich.edu/csg/abecasis/Metal/index.html; whole-genome association analysis

package, PLINK, http://pngu.mgh.harvard.edu/~purcell/plink; whole-genome association analysis of imputed data, ProbABEL, http://mga.bionet.nsc.ru/~yurii/ABEL; statistical computer software, R, http://www.r-project.org; whole-genome association analysis package, SNPTEST, http://www.stats.ox.ac.uk/~marchini/software/gwas/snptest.html.

REFERENCES

- 1. Scheet, P. & Stephens, M. A Fast and Flexible Statistical Model for Large-Scale Population Genotype Data: Applications to Inferring Missing Genotypes and Haplotypic Phase. *The American Journal of Human Genetics* **78**, 629 (2006).
- 2. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. *Nat Genet* **39**, 906 (2007).
- 3. Li, Y., Willer, C., Sanna, S. & Abecasis, G. Genotype Imputation. *Annu. Rev. Genomics Hum. Genet.* **10**, 387-406 (2009).
- 4. Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet* **81**, 559-575 (2007).
- 5. Laird, N. M., Horvarth, S. & Xu, X. Implementing a unified approach to family-based tests of association. *Genetic Epidemiology* **19**, S36-S42 (2000).
- 6. Purcell, S. M. *et al.* Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. *Nature* **460**, 748-752 (2009).
- 7. Park, J.H. et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. *Nat Genet* **42**, 570-5 (2010).
- 8. Raychaudhuri, S. *et al.* Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. *PLoS Genet* **5**, e1000534 (2009).
- 9. Segrè, A.V. et al. Common Inherited Variation in Mitochondrial Genes is not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits. *PLoS Genet*, In press (2010)
- 10. Frazer, K. A. *et al.* A second generation human haplotype map of over 3.1 million SNPs. *Nature* **449**, 851-861 (2007).
- 11. Yang, J. *et al.* Genomic Control under Polygenic Inheritance. submitted.
- 12. Campbell, C. D. *et al.* Demonstrating stratification in a European-American population. *Nature Genet* **37**, 868-872 (2005).
- 13. Aulchenko, Y.S. *et al.* Linkage disequilibrium in young genetically isolated Dutch population. *Eur J Hum Genet* **12**, 527-534 (2004).
- 14. Splansky, G.L. *et al.* The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. *Am J Epidemiol*.**165**,1328-1335 (2007).
- 15. Burton, P. R. *et al.* Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature* **447**, 661-678 (2007).
- 16. Price, A. L. *et al.* Discerning the ancestry of European Americans in genetic association studies. *Plos Genetics* **4** (2008).
- 17. Tian, C. *et al.* Analysis and application of European genetic substructure using 300 KSNP information. *Plos Genetics* **4** (2008).
- 18. Price, A.L. *et al.* Principal components analysis corrects for stratification in genome-wide association studies. *Nature Genet* **38**, 904-909 (2006).

- 19. Dixon, A. L. *et al.* A genome-wide association study of global gene expression. *Nat Genet* **39**, 1202-1207 (2007).
- 20. Ge, B. *et al.* Global patterns of cis variation in human cells revealed by high-density allelic expression analysis. *Nat Genet* **41**, 1216-1222 (2009).
- 21. Schadt, E. E. *et al.* Mapping the genetic architecture of gene expression in human liver. *PLoS Biol* **6** (2008).

Supplementary Tables

- Supplementary Table 1: Meta-analysis results
- Supplementary Table 2: Extreme height association results
- Supplementary Table 3: Family-based analyses results
- Supplementary Table 4: Estimated total number of associated loci
- Supplementary Table 5 : Dominant/recessive results
- Supplementary Table 6: Gene x Gene interaction results
- Supplementary Table 7: Overlap with eQTL
- Supplementary Table 8: Overlap with nsSNPs
- Supplementary Table 9: Overlap of signals with GWAS of other traits and diseases
- Supplementary Table 10: List of OMIM height genes
- Supplementary Table 11: Overlap with OMIM height genes
- Supplementary Table 12: Gene Set Enrichment Analysis results
- Supplementary Table 13: Biological evidence for genes at associated loci

Supplementary Table 1. Association results for Stage 1 (discovery GWAS), Stage 2 (in-silico replication), Stage 1+2 combined, and Stage 1+2 sex-specific meta-analyses, for the 180 independent signals that reached genome-wide significance (P<5x10⁻⁸) in the combined Stage 1+2 analysis. I² represents the % heterogeneity of effect size between Stage 1 studies. *P*_{het} is the heterogeneity *P*-value.

						STAGE 1		ST/	AGE 2	STAGE 1	+ STAGE 2		STAGE 1 +	STAGE 2 SE	X-SPECIFIC			
						up	to 133,653	samples	5	up to 50,0	074 samples	up to 183,	727 samples	up	to 73,238 m	nales and 1	10,489 fema	ales
SNP ^a	Chr	Position (bp)	Nearest/OMIM height gene ^b	Effect / other allele ^c	Frequency (effect allele)	Beta	P-value ^d	l ²	P _{het}	Beta	P-value ^d	Beta	P-value ^d	Beta (Males)	P-value ^d (Males)	Beta (Females)	P-value ^d (Females)	P _{het} (MvsF
rs425277	1	2059032	PRKCZ	T/C	0.28	0.024	1.70E-06	0	0.73	0.019	3.10E-03	0.022	2.10E-08	0.017	5.90E-03	0.027	6.70E-08	0.15
rs2284746	1	17179262	MFAP2	C/G	0.48	-0.035	5.60E-15	17.77	0.07	-0.049	2.50E-16	-0.04	3.90E-29	-0.041	1.60E-13	-0.039	1.80E-18	0.76
rs1738475	1	23409478	HTR1D	C/G	0.59	0.022	1.90E-06	0	0.69	0.031	1.60E-07	0.025	3.00E-12	0.02	2.80E-04	0.028	5.20E-10	0.25
rs4601530	1	24916698	CLIC4	T/C	0.26	-0.024	2.00E-06	15.60	0.10	-0.036	1.10E-07	-0.028	2.20E-12	-0.03	6.50E-07	-0.025	5.20E-07	0.47
rs7532866	1	26614131	LIN28	A/G	0.67	0.022	3.30E-06	0	0.54	0.02	2.60E-03	0.021	3.40E-08	0.017	4.30E-03	0.025	1.30E-07	0.23
rs2154319	1	41518357	SCMH1	T/C	0.75	-0.034	4.30E-10	0	0.86	-0.025	4.90E-04	-0.03	1.80E-12	-0.024	2.70E-04	-0.035	4.60E-11	0.13
rs17391694	1	78396214	GIPC2	T/C	0.12	0.04	5.90E-07	7.76	0.27	0.045	5.60E-06	0.042	1.70E-11	0.041	7.00E-06	0.042	5.90E-08	0.95
rs6699417	1	88896031	PKN2	T/C	0.61	0.022	1.70E-06	0	0.89	0.02	8.60E-04	0.021	5.00E-09	0.02	3.10E-04	0.02	6.40E-06	0.99
rs10874746	1	93096559	RPL5	T/C	0.37	-0.022	1.70E-06	0	0.55	-0.027	7.90E-06	-0.024	6.70E-11	-0.024	1.30E-05	-0.022	7.30E-07	0.78
rs9428104	1	118657110	SPAG17	A/G	0.24	-0.038	8.90E-13	0	0.98	-0.048	6.40E-12	-0.041	5.60E-23	-0.039	9.10E-10	-0.043	4.10E-17	0.55
rs11205277	1	148159496	SF3B4	A/G	0.58	-0.045	1.20E-18	0.02	0.48	-0.048	8.10E-15	-0.046	4.80E-32	-0.042	9.60E-12	-0.049	2.00E-24	0.36
rs17346452	1	170319910	DNM3	T/C	0.73	-0.038	3.30E-14	0	0.79	-0.045	4.00E-11	-0.04	1.40E-23	-0.037	1.10E-09	-0.042	6.60E-17	0.56
rs1325598	1	175058872	PAPPA2	A/G	0.43	-0.026	1.60E-08	0	0.88	-0.016	9.60E-03	-0.022	1.10E-09	-0.025	4.10E-06	-0.021	2.70E-06	0.52
rs1046934	1	182290152	TSEN15	A/C	0.64	-0.046	6.40E-22	0	0.80	-0.042	2.30E-11	-0.044	2.10E-31	-0.043	8.60E-14	-0.044	1.10E-20	0.94
rs10863936	1	210304421	DTL	A/G	0.53	-0.022	6.20E-07	3.05	0.40	-0.02	8.40E-04	-0.021	1.90E-09	-0.029	5.40E-08	-0.017	1.10E-04	0.06
rs6684205	1	216676325	TGFB2	A/G	0.71	-0.033	2.00E-11	0	0.61	-0.019	4.00E-03	-0.028	1.50E-12	-0.032	7.20E-08	-0.026	8.50E-08	0.41
rs11118346	1	217810342	LYPLAL1	T/C	0.47	-0.026	2.20E-09	9.57	0.22	-0.023	2.00E-04	-0.025	1.90E-12	-0.018	9.50E-04	-0.03	3.10E-11	0.05
rs10799445	1	225978506	JMJD4	A/C	0.77	0.031	1.20E-08	0	0.51	0.033	2.80E-06	0.032	2.40E-13	0.026	4.00E-05	0.036	7.10E-12	0.21
rs4665736	2	25041103	DNAJC27	T/C	0.54	0.034	1.40E-13	0	0.97	0.021	4.30E-04	0.029	7.30E-16	0.022	5.30E-05	0.034	3.40E-14	0.08
rs6714546	2	33214929	LTBP1	A/G	0.28	-0.025	2.20E-06	0	0.99	-0.026	1.70E-04	-0.026	1.60E-09	-0.019	3.40E-03	-0.029	2.70E-08	0.19
rs17511102	2	37814117	CDC42EP3	A/T	0.91	-0.06	1.30E-12	0	0.67	-0.061	1.70E-07	-0.06	1.60E-18	-0.061	1.80E-09	-0.06	1.20E-12	0.9
rs2341459	2	44621706	C2orf34	T/C	0.27	0.028	3.60E-08	0	0.75	0.02	4.40E-03	0.025	7.90E-10	0.031	2.40E-07	0.021	4.70E-05	0.14
rs12474201	2	46774789	SOCS5	A/G	0.35	0.023	1.00E-06	0	0.62	0.036	1.00E-08	0.028	2.60E-13	0.026	6.10E-06	0.028	2.90E-09	0.78
rs3791675	2	55964813	EFEMP1	T/C	0.23	-0.05	2.40E-20	22.09	0.03	-0.059	3.20E-17	-0.053	2.50E-35	-0.055	1.20E-17	-0.052	3.60E-23	0.71
rs11684404	2	88705737	EIF2AK3	T/C	0.67	-0.027	6.40E-09	14.78	0.12	-0.029	2.60E-06	-0.028	9.90E-14	-0.03	7.10E-08	-0.025	4.20E-08	0.46
rs7567288	2	134151294	NCKAP5	T/C	0.8	-0.031	6.70E-08	0	0.92	-0.033	8.40E-06	-0.032	2.10E-12	-0.029	2.10E-05	-0.033	4.10E-09	0.6
rs7567851	2	178392966	PDE11A	C/G	0.08	0.041	7.50E-07	25.21	0.01	0.028	9.50E-03	0.037	3.30E-08	0.033	8.20E-04	0.038	3.60E-06	0.7
rs1351164	2	217980143	TNS1	T/C	0.79	0.028	3.70E-07	0	0.87	0.044	2.70E-09	0.034	2.10E-14	0.033	4.30E-07	0.032	5.90E-09	0.83
rs12470505	2	219616613	CCDC108/IHH	T/G	0.9	0.048	1.30E-10	0	0.67	0.028	5.80E-03	0.041	8.90E-12	0.059	1.40E-10	0.032	2.50E-05	0.01
rs2629046	2	224755988	SERPINE2	T/C	0.55	0.025	2.20E-08	0	0.89	0.023	1.00E-04	0.024	7.90E-12	0.019	3.80E-04	0.027	7.20E-10	0.2
rs2580816	2	232506210	NPPC	T/C	0.19	-0.041	1.80E-12	0	0.80	-0.051	4.60E-11	-0.045	5.80E-22	-0.05	9.30E-13	-0.041	1.70E-12	0.23
rs12694997	2	241911659	SEPT2	A/G	0.24	-0.027	1.80E-07	3.06	0.40	-0.018	1.40E-02	-0.024	1.20E-08	-0.021	1.10E-03	-0.025	1.40E-06	0.61
rs2597513	3	13530836	HDAC11	T/C	0.9	-0.039	1.10E-07	9.85	0.22	-0.031	1.40E-03	-0.036	7.40E-10	-0.036	4.90E-05	-0.038	1.10E-07	0.83
rs13088462	3	51046753	DOCK3	T/C	0.94	-0.054	3.10E-07	0	0.80	-0.048	2.90E-04	-0.052	3.80E-10	-0.057	4.70E-06	-0.048	2.40E-06	0.56

rs2336725	3	53093779	RTF1	T/C	0.55	-0.026	3.50E-08	8.25	0.26	-0.028	5.20E-06	-0.027	9.70E-13	-0.028	1.00E-06	-0.026	1.30E-08	0.85
rs9835332	3	56642722	C3orf63	C/G	0.46	-0.022	8.70E-07	8.66	0.25	-0.032	5.70E-08	-0.026	5.30E-13	-0.026	2.10E-06	-0.025	2.10E-08	0.91
rs17806888	3	67499012	SUCLG2	T/C	0.88	0.04	1.10E-07	7.76	0.28	0.028	3.70E-03	0.036	2.10E-09	0.036	7.10E-05	0.035	1.20E-06	0.93
rs9863706	3	72520103	RYBP	T/C	0.22	-0.03	1.50E-08	0	0.69	-0.033	4.70E-06	-0.031	4.10E-13	-0.034	2.50E-07	-0.03	1.80E-08	0.6
rs6439167	3	130533446	C3orf47	T/C	0.21	-0.034	7.20E-10	0	0.89	-0.035	2.40E-06	-0.034	8.90E-15	-0.026	1.10E-04	-0.039	4.80E-13	0.09
rs9844666	3	137456906	РССВ	A/G	0.25	-0.028	3.10E-08	0	0.77	-0.017	1.70E-02	-0.024	3.50E-09	-0.016	8.60E-03	-0.029	1.80E-08	0.09
rs724016	3	142588260	ZBTB38	A/G	0.56	-0.067	4.50E-52	20.23	0.05	-0.075	2.90E-36	-0.07	3.10E-86	-0.066	8.80E-35	-0.071	5.70E-60	0.42
rs572169	3	173648421	GHSR	T/C	0.31	0.036	9.90E-14	3.61	0.38	0.03	3.40E-06	0.033	2.80E-18	0.03	2.80E-07	0.036	4.20E-14	0.4
rs720390	3	187031377	IGF2BP2	A/G	0.39	0.031	1.60E-10	19.54	0.05	0.026	1.80E-05	0.029	1.90E-14	0.036	4.40E-10	0.026	3.20E-08	0.14
rs2247341	4	1671115	SLBP/FGFR3	A/G	0.36	0.025	6.80E-08	17.58	0.08	0.026	3.80E-05	0.025	1.50E-11	0.027	1.60E-06	0.024	1.80E-07	0.67
rs6449353	4	17642586	LCORL	T/C	0.85	0.071	1.30E-27	0	0.69	0.081	2.60E-20	0.075	7.10E-46	0.074	2.10E-21	0.076	3.20E-32	0.88
rs17081935	4	57518233	POLR2B	T/C	0.2	0.031	4.80E-08	6.60	0.30	0.028	1.80E-04	0.03	3.70E-11	0.038	1.70E-08	0.025	6.60E-06	0.09
rs7697556	4	73734177	ADAMTS3	T/C	0.47	0.022	1.30E-06	0	0.71	0.038	2.90E-10	0.028	2.00E-14	0.03	4.80E-08	0.026	5.00E-09	0.56
rs788867	4	82369030	PRKG2/BMP3	T/G	0.68	-0.039	1.80E-15	0	0.52	-0.05	2.10E-14	-0.043	8.90E-28	-0.042	9.00E-13	-0.042	1.60E-18	0.95
rs10010325	4	106325802	TET2	A/C	0.49	0.021	2.30E-06	0	0.68	0.028	3.20E-06	0.024	3.90E-11	0.025	2.40E-06	0.022	3.40E-07	0.64
rs7689420	4	145787802	HHIP	T/C	0.16	-0.069	1.40E-29	10.51	0.20	-0.08	1.40E-23	-0.073	6.20E-51	-0.07	8.90E-22	-0.075	1.10E-35	0.61
rs955748	4	184452669	WWC2	A/G	0.24	-0.024	2.20E-06	0	0.52	-0.019	5.70E-03	-0.023	4.40E-08	-0.027	1.50E-05	-0.019	1.60E-04	0.29
rs1173727	5	32866278	NPR3	T/C	0.4	0.036	4.00E-15	1.45	0.44	0.032	1.10E-07	0.034	1.60E-21	0.038	4.60E-12	0.031	3.10E-12	0.27
rs11958779	5	55037656	SLC38A9	A/G	0.7	-0.028	8.00E-09	0	0.92	-0.026	4.90E-05	-0.027	1.80E-12	-0.028	1.20E-06	-0.027	2.30E-08	0.8
rs10037512	5	88390431	MEF2C	T/C	0.56	0.027	3.80E-09	22.57	0.03	0.04	2.20E-11	0.032	2.00E-18	0.035	1.70E-10	0.029	1.40E-10	0.3
rs13177718	5	108141243	FER	T/C	0.07	-0.041	4.10E-06	12.78	0.16	-0.037	2.20E-03	-0.04	3.00E-08	-0.051	2.30E-06	-0.034	1.30E-04	0.16
rs1582931	5	122685098	CEP120	A/G	0.47	-0.025	2.10E-08	0	0.98	-0.019	1.90E-03	-0.023	1.50E-10	-0.019	3.50E-04	-0.026	8.10E-09	0.31
rs274546	5	131727766	SLC22A5	A/G	0.4	-0.028	8.50E-10	0	0.92	-0.032	1.50E-07	-0.029	7.30E-16	-0.035	2.00E-10	-0.025	1.50E-08	0.13
rs526896	5	134384604	PITX1	T/G	0.73	0.032	1.90E-09	2.86	0.40	0.029	3.20E-05	0.03	2.30E-13	0.024	1.70E-04	0.035	1.70E-11	0.15
rs4282339	5	168188818	SLIT3	A/G	0.2	-0.035	3.40E-10	4.07	0.37	-0.038	3.10E-07	-0.036	6.60E-16	-0.034	4.40E-07	-0.037	1.70E-11	0.69
rs12153391	5	171136043	FBXW11	A/C	0.25	-0.033	8.70E-10	0	0.83	-0.024	5.20E-04	-0.03	3.60E-12	-0.027	2.10E-05	-0.032	2.00E-09	0.57
rs889014	5	172916720	BOD1	T/C	0.36	-0.029	4.50E-10	8.66	0.25	-0.032	2.10E-07	-0.03	9.40E-16	-0.032	9.70E-09	-0.028	8.30E-10	0.51
rs422421	5	176449932	FGFR4/NSD1	T/C	0.22	-0.033	1.40E-09	27.96	0.01	-0.028	1.40E-04	-0.031	1.10E-12	-0.03	7.10E-06	-0.034	5.20E-10	0.64
rs6879260	5	179663620	GFPT2	T/C	0.39	-0.028	5.60E-10	0	0.79	-0.01	9.70E-02	-0.022	1.60E-09	-0.02	3.40E-04	-0.025	3.00E-08	0.41
rs3812163	6	7670759	BMP6	A/T	0.54	-0.037	6.70E-16	23.10	0.03	-0.035	4.30E-09	-0.036	1.20E-23	-0.033	2.80E-09	-0.039	1.50E-18	0.36
rs1047014	6	19949472	ID4	T/C	0.75	-0.029	1.10E-07	0	0.55	-0.037	1.80E-07	-0.032	1.80E-13	-0.033	7.80E-07	-0.032	4.10E-09	0.9
rs806794	6	26308656	Histone cluster	A/G	0.7	0.053	5.50E-26	22.95	0.03	0.051	4.30E-15	0.052	1.20E-39	0.046	2.50E-14	0.057	5.30E-31	0.12
rs3129109	6	29192211	OR2J3	T/C	0.39	-0.026	3.30E-08	16.96	0.09	-0.041	1.60E-11	-0.032	2.40E-17	-0.029	2.60E-07	-0.032	3.30E-12	0.64
rs2256183	6	31488508	MICA	A/G	0.45	0.035	2.70E-14	0	0.54	0.051	8.30E-17	0.04	7.80E-29	0.043	4.40E-14	0.037	3.60E-17	0.43
rs6457620	6	32771977	HLA locus	C/G	0.51	-0.024	3.60E-08	0	0.98	-0.037	2.50E-10	-0.029	2.10E-16	-0.03	2.50E-08	-0.028	1.00E-10	0.81
rs2780226	6	34307070	HMGA1	T/C	0.92	-0.079	1.00E-18	20.61	0.05	-0.072	1.70E-10	-0.076	8.10E-28	-0.077	1.90E-12	-0.076	2.00E-19	0.96
rs6457821	6	35510783	PPARD/FANCE	A/C	0.02	-0.121	1.80E-11	3.24	0.40	-0.068	8.00E-03	-0.104	2.10E-12	-0.084	2.20E-04	-0.112	3.40E-10	0.29
rs9472414	6	45054484	SUPT3H/ <mark>RUNX2</mark>	A/T	0.22	-0.031	2.40E-08	26.80	0.01	-0.019	8.70E-03	-0.026	1.80E-09	-0.029	6.90E-06	-0.026	1.70E-06	0.66
rs9360921	6	76322362	SENP6	T/G	0.89	-0.048	4.60E-11	17.19	0.08	-0.033	5.00E-04	-0.042	2.60E-13	-0.045	1.20E-07	-0.04	1.40E-08	0.62
rs310405	6	81857081	FAM46A	A/G	0.52	0.03	3.60E-11	0	0.89	0.02	8.10E-04	0.026	2.20E-13	0.023	2.60E-05	0.03	1.30E-11	0.25
rs7759938	6	105485647	LIN28B	T/C	0.68	-0.042	8.70E-18	6.39	0.30	-0.051	4.10E-15	-0.045	8.30E-31	-0.04	8.70E-12	-0.048	5.20E-23	0.26
rs1046943	6	109890634	ZBTB24	A/G	0.58	0.022	8.60E-07	0	0.67	0.016	7.20E-03	0.02	2.50E-08	0.024	1.20E-05	0.019	1.90E-05	0.46
rs961764	6	117628849	VGLL2	C/G	0.42	-0.023	2.40E-07	0	0.87	-0.026	1.20E-05	-0.024	1.30E-11	-0.024	1.20E-05	-0.025	8.90E-09	0.79

rs1490384	6	126892853	C6orf173	T/C	0.5	0.037	3.20E-16	15.83	0.10	0.028	1.80E-06	0.034	3.90E-21	0.037	5.30E-12	0.033	3.40E-14	0.55
rs6569648	6	130390812	L3MBTL3	T/C	0.76	-0.036	8.90E-12	16.88	0.08	-0.047	1.20E-11	-0.04	1.10E-21	-0.046	5.10E-13	-0.035	8.40E-12	0.14
rs7763064	6	142838982	GPR126	A/G	0.29	-0.045	6.40E-19	6.91	0.29	-0.055	7.20E-17	-0.048	1.10E-33	-0.044	2.10E-13	-0.051	5.30E-26	0.29
rs543650	6	152152636	ESR1	T/G	0.4	-0.032	1.40E-09	16.12	0.11	-0.037	2.10E-09	-0.034	1.20E-17	-0.029	3.30E-06	-0.036	1.30E-13	0.36
rs9456307	6	158849430	TULP4	A/T	0.06	-0.05	4.60E-07	0.20	0.47	-0.045	1.20E-03	-0.048	2.20E-09	-0.041	7.90E-04	-0.053	6.20E-08	0.38
rs798489	7	2768329	GNA12	T/C	0.3	-0.052	8.50E-25	0	0.55	-0.042	1.70E-10	-0.048	1.90E-33	-0.051	4.50E-17	-0.046	5.10E-21	0.53
rs4470914	7	19583047	TWISTNB	T/C	0.18	0.033	3.80E-08	5.76	0.32	0.023	3.40E-03	0.029	9.20E-10	0.03	4.80E-05	0.029	5.50E-07	0.93
rs12534093	7	23469499	IGF2BP3	A/T	0.22	-0.03	5.60E-08	3.09	0.39	-0.04	4.10E-08	-0.034	2.00E-14	-0.032	1.70E-06	-0.033	5.30E-10	0.84
rs1708299	7	28156471	JAZF1	A/G	0.3	0.042	1.50E-17	14.38	0.12	0.038	5.80E-09	0.04	5.80E-25	0.036	4.10E-10	0.044	3.30E-20	0.25
rs6959212	7	38094851	STARD3NL	T/C	0.32	-0.023	2.80E-06	0	0.52	-0.025	1.30E-04	-0.024	1.60E-09	-0.021	3.40E-04	-0.024	5.90E-07	0.66
rs42235	7	92086012	CDK6	T/C	0.31	0.055	7.30E-28	21.51	0.04	0.062	1.90E-20	0.057	7.70E-47	0.046	1.60E-14	0.063	3.70E-37	0.01
rs822552	7	148281567	PDIA4	C/G	0.74	-0.03	1.30E-07	0	0.48	-0.017	2.70E-02	-0.025	2.60E-08	-0.032	2.30E-06	-0.022	9.40E-05	0.24
rs2110001	7	150147955	TMEM176A	C/G	0.69	-0.033	9.80E-10	17.78	0.08	-0.028	4.40E-05	-0.031	3.30E-13	-0.029	3.40E-06	-0.032	4.40E-10	0.71
rs1013209	8	24172249	ADAM28	T/C	0.25	-0.029	4.50E-08	10.06	0.21	-0.019	7.30E-03	-0.025	1.60E-09	-0.026	4.80E-05	-0.026	8.90E-07	0.95
rs7460090	8	57356717	SDR16C5	T/C	0.87	0.055	9.60E-16	0	0.70	0.064	7.70E-13	0.058	8.20E-27	0.051	7.00E-10	0.064	1.10E-21	0.16
rs6473015	8	78341040	PEX2	A/C	0.72	-0.032	1.70E-10	12.48	0.16	-0.023	5.80E-04	-0.029	6.90E-13	-0.03	8.90E-07	-0.028	9.00E-09	0.84
rs6470764	8	130794847	GSDMC	T/C	0.2	-0.047	5.90E-17	17.64	0.07	-0.056	3.40E-13	-0.05	1.70E-28	-0.05	1.60E-13	-0.05	4.10E-18	0.95
rs12680655	8	135706519	ZFAT	C/G	0.6	0.03	4.80E-11	16.69	0.09	0.024	7.50E-05	0.028	1.60E-14	0.025	5.10E-06	0.029	3.70E-11	0.45
rs7864648	9	16358732	BNC2	T/G	0.32	0.025	4.90E-07	3.83	0.37	0.017	7.80E-03	0.022	2.10E-08	0.027	5.40E-06	0.019	9.70E-05	0.23
rs11144688	9	77732106	PCSK5	A/G	0.11	-0.055	1.50E-09	0	0.52	-0.04	9.10E-04	-0.049	9.60E-12	-0.044	3.30E-05	-0.057	3.90E-10	0.28
rs7853377	9	85742025	C9orf64	A/G	0.77	-0.026	3.10E-06	0	0.65	-0.021	3.50E-03	-0.024	4.50E-08	-0.018	6.10E-03	-0.027	5.00E-07	0.26
rs8181166	9	88306448	ZCCHC6	C/G	0.53	0.025	1.10E-07	26.48	0.01	0.028	3.90E-06	0.026	2.70E-12	0.019	8.30E-04	0.031	8.20E-12	0.07
rs2778031	9	90025546	SPIN1	T/C	0.24	0.027	3.60E-07	0	0.81	0.037	2.40E-07	0.031	9.00E-13	0.031	1.50E-06	0.029	2.20E-08	0.78
rs9969804	9	94468941	ІРРК	A/C	0.44	0.028	5.60E-10	0	0.61	0.033	1.90E-08	0.03	7.70E-17	0.028	1.50E-07	0.029	7.30E-11	0.92
rs1257763	9	95933766	PTPDC1	A/G	0.04	0.069	2.50E-06	0	0.95	0.07	1.00E-04	0.069	9.90E-10	0.063	2.10E-04	0.075	1.00E-07	0.55
rs473902	9	97296056	PTCH1/FANCC	T/G	0.92	0.074	1.70E-14	0	0.61	0.05	6.80E-05	0.065	2.30E-17	0.061	6.70E-08	0.068	9.80E-13	0.62
rs7027110	9	108638867	ZNF462	A/G	0.23	0.034	1.30E-10	0	0.85	0.025	3.80E-04	0.031	2.30E-13	0.032	4.80E-07	0.03	8.90E-09	0.72
rs1468758	9	112846903	LPAR1	T/C	0.25	-0.026	1.50E-06	0	0.59	-0.026	1.90E-04	-0.026	1.40E-09	-0.031	1.20E-06	-0.022	2.50E-05	0.24
rs751543	9	118162163	PAPPA	T/C	0.72	0.029	4.50E-08	0	0.86	0.021	3.40E-03	0.026	6.50E-10	0.027	2.50E-05	0.026	6.70E-07	0.89
rs7466269	9	132453905	FUBP3	A/G	0.64	0.036	1.20E-14	37.95	0.00	0.024	7.50E-05	0.032	2.60E-17	0.032	2.70E-08	0.032	2.30E-12	0.92
rs7849585	9	138251691	QSOX2	T/G	0.33	0.032	3.40E-11	14.89	0.12	0.024	1.50E-04	0.029	4.70E-14	0.031	1.70E-07	0.028	3.30E-09	0.69
rs7909670	10	12958770	CCDC3	T/C	0.44	-0.022	1.30E-06	0	0.85	-0.02	7.30E-04	-0.021	3.20E-09	-0.028	3.60E-07	-0.016	2.60E-04	0.06
rs2145998	10	80791702	PPIF	A/T	0.49	-0.025	2.70E-08	2.75	0.40	-0.027	3.80E-06	-0.026	3.60E-13	-0.027	4.80E-07	-0.025	2.60E-08	0.68
rs11599750	10	101795432	CPN1	T/C	0.38	-0.023	7.60E-07	0	0.82	-0.036	6.90E-09	-0.028	1.60E-13	-0.023	3.40E-05	-0.03	9.00E-11	0.32
rs2237886	11	2767307	KCNQ1	T/C	0.11	0.043	3.10E-08	6.34	0.31	0.05	1.00E-06	0.046	2.20E-13	0.037	7.50E-05	0.05	4.30E-11	0.25
rs7926971	11	12654616	TEAD1	A/G	0.55	-0.024	7.30E-08	0	0.91	-0.019	1.40E-03	-0.023	4.40E-10	-0.025	3.50E-06	-0.02	8.30E-06	0.4
rs1330	11	17272605	NUCB2	T/C	0.35	0.024	4.40E-07	17.47	0.08	0.019	2.10E-03	0.022	4.90E-09	0.02	4.70E-04	0.024	3.10E-07	0.56
rs10838801	11	48054856	PTPRJ/SLC39A13	A/G	0.69	-0.031	1.80E-10	12.10	0.17	-0.02	1.90E-03	-0.027	3.50E-12	-0.024	5.40E-05	-0.031	7.70E-11	0.27
rs1814175	11	49515748	FOLH1	T/C	0.34	0.023	2.60E-06	0	0.62	0.02	1.60E-03	0.022	1.60E-08	0.016	5.60E-03	0.027	2.20E-08	0.13
rs5017948	11	512/0794	UK4A5	A/T	0.18	0.027	4.70E-06	9.62	0.23	0.026	1.60E-03	0.027	3.10E-08	0.016	3.10E-02	0.036	1.60E-09	0.02
rs3/82089	11	65093395	SSSCA1	1/C	0.06	-0.058	5.90E-09	U	0.63	-0.057	1.40E-05	-0.058	3.60E-13	-0.071	2.00E-09	-0.049	7.70E-07	0.13
rs/112925	11	66582736	KHOD	1/C	0.35	-0.023	8.50E-07	0	0.48	-0.023	2.00E-04	-0.023	9.00E-10	-0.026	5.90E-06	-0.022	2.30E-06	0.57
rs634552	11	/4959700	SERPINH1	I/G	0.14	0.041	1.40E-09	2.32	0.42	0.035	4.40E-05	0.039	3.50E-13	0.036	7.00E-06	0.04	1.60E-09	0.69

rs494459	11	118079885	TREH	T/C	0.41	0.021	4.90E-06	19.42	0.05	0.02	1.10E-03	0.02	1.70E-08	0.023	1.90E-05	0.019	2.30E-05	0.5
rs654723	11	128091365	FLI1	A/C	0.62	0.024	6.70E-07	0	0.93	0.028	8.00E-06	0.025	3.60E-11	0.026	4.70E-06	0.025	1.30E-07	0.82
rs2856321	. 12	11747040	ETV6	A/G	0.64	-0.03	1.50E-10	0	0.99	-0.029	4.00E-06	-0.029	4.50E-15	-0.029	4.10E-07	-0.03	8.10E-11	0.83
rs1077070	5 12	20748734	SLCO1C1	A/C	0.33	0.031	4.60E-11	0	0.75	0.036	2.20E-08	0.033	8.00E-18	0.031	8.40E-08	0.033	3.80E-12	0.77
rs2638953	12	28425682	CCDC91	C/G	0.68	0.036	8.40E-14	2.95	0.40	0.026	5.40E-05	0.032	6.70E-17	0.024	3.10E-05	0.038	1.10E-15	0.04
rs2066807	12	55026949	STAT2	C/G	0.93	-0.052	9.60E-09	0	0.71	-0.058	1.90E-06	-0.054	1.00E-13	-0.047	2.20E-05	-0.056	1.30E-10	0.49
rs1351394	12	64638093	HMGA2	T/C	0.49	0.054	7.80E-34	24.54	0.02	0.073	1.60E-34	0.06	1.70E-65	0.054	1.40E-23	0.063	9.00E-48	0.14
rs1074812	8 12	68113925	FRS2	T/G	0.35	0.035	3.80E-11	20.87	0.04	0.042	1.20E-10	0.038	2.10E-20	0.043	1.10E-11	0.034	8.10E-12	0.23
rs1110711	5 12	92502635	SOCS2	T/G	0.22	0.052	1.70E-23	10.02	0.21	0.05	2.20E-12	0.052	1.40E-34	0.044	4.70E-12	0.057	1.90E-27	0.1
rs797153€	12	100897919	CCDC53/GNPTAB	A/T	0.46	-0.025	1.10E-07	0	0.64	-0.034	4.30E-08	-0.028	8.20E-14	-0.029	3.40E-07	-0.027	1.30E-08	0.75
rs1183010	3 12	122389499	SBNO1	A/G	0.78	-0.035	3.80E-10	0	0.76	-0.035	2.50E-06	-0.035	3.90E-15	-0.041	1.40E-09	-0.032	4.50E-09	0.27
rs7332115	13	32045548	PDS5B/BRCA2	T/G	0.62	-0.025	7.60E-08	0	0.86	-0.02	1.10E-03	-0.023	5.50E-10	-0.02	4.80E-04	-0.026	1.70E-08	0.37
rs3118905	13	50003335	DLEU7	A/G	0.29	-0.052	3.00E-25	0	0.58	-0.063	3.10E-22	-0.056	1.10E-45	-0.05	4.00E-17	-0.06	1.60E-34	0.15
rs7319045	13	90822575	GPC5	A/G	0.4	0.029	4.50E-10	0	0.89	0.019	1.80E-03	0.025	1.20E-11	0.027	8.40E-07	0.024	1.40E-07	0.6
rs195050(14	23900690	NFATC4	T/C	0.29	0.032	3.90E-11	0	0.95	0.038	8.70E-09	0.034	2.20E-18	0.038	2.00E-10	0.031	1.60E-10	0.32
rs209321(14	60027032	SIX6	T/C	0.58	-0.034	2.30E-12	0	0.56	-0.029	3.90E-06	-0.032	6.20E-17	-0.028	2.10E-06	-0.036	1.90E-14	0.23
rs157010€	14	67882868	RAD51L1	T/C	0.2	-0.026	4.90E-06	0.50	0.47	-0.026	4.70E-04	-0.026	8.10E-09	-0.023	5.40E-04	-0.027	1.70E-06	0.67
rs862034	14	74060499	LTBP2	A/G	0.36	-0.023	1.10E-06	12.90	0.15	-0.037	1.90E-09	-0.028	7.30E-14	-0.032	1.90E-08	-0.024	2.10E-07	0.24
rs7155279	14	91555634	TRIP11	T/G	0.36	-0.029	8.90E-10	21.48	0.04	-0.016	9.20E-03	-0.024	1.40E-10	-0.028	8.70E-07	-0.022	1.10E-06	0.38
rs1696421	1 15	49317787	CYP19A1	A/G	0.05	-0.051	2.50E-06	14.06	0.13	-0.049	1.60E-04	-0.05	1.70E-09	-0.067	8.10E-08	-0.036	5.30E-04	0.04
rs7178424	15	60167551	C2CD4A	T/C	0.47	-0.024	2.20E-07	0	0.62	-0.017	6.20E-03	-0.021	5.60E-09	-0.02	2.50E-04	-0.021	1.50E-06	0.88
rs1015259	1 15	67835211	TLE3	A/C	0.91	0.045	3.50E-08	0	0.50	0.034	1.50E-03	0.041	2.70E-10	0.033	8.60E-04	0.046	6.60E-09	0.28
rs1290242	1 15	69948457	MYO9A	T/C	0.97	-0.069	1.70E-06	0	0.51	-0.051	3.70E-03	-0.062	2.90E-08	-0.049	2.80E-03	-0.072	2.50E-07	0.25
rs5742915	15	72123686	PML	T/C	0.54	-0.031	3.00E-10	0	0.71	-0.031	5.30E-07	-0.031	1.00E-15	-0.039	3.90E-11	-0.027	1.10E-08	0.08
rs1125993	6 15	82371586	ADAMTSL3	A/C	0.48	-0.042	2.20E-21	3.92	0.37	-0.047	1.10E-15	-0.044	1.70E-35	-0.036	1.50E-11	-0.049	1.00E-29	0.03
rs1694234	1 15	87189909	ACAN	T/C	0.03	-0.134	1.30E-17	24.62	0.03	-0.124	4.50E-11	-0.13	3.80E-27	-0.139	1.60E-14	-0.122	1.40E-16	0.43
rs2871865	15	97012419	IGF1R	C/G	0.88	0.054	1.10E-12	32.60	0.002	0.062	3.50E-10	0.057	2.90E-21	0.052	1.80E-08	0.058	2.80E-15	0.54
rs4965598	15	98577137	ADAMTS17	т/с	0.68	-0.035	1.40E-13	0	0.81	-0.015	2.30E-02	-0.028	4.30E-13	-0.024	5.10E-05	-0.032	9.70E-12	0.21
rs1164879	5 16	732191	NARFL	A/G	0.74	-0.031	2.40F-07	0	0.87	-0.039	6.90E-08	-0.034	1.20F-13	-0.032	7.40F-06	-0.035	5.60F-10	0.71
rs26868	16	2189377	CASKIN1	A/T	0.46	0.03	3.50E-08	0	0.78	0.04	2.40E-10	0.034	9.00E-17	0.036	1.20E-08	0.034	9.80E-12	0.73
rs1659127	16	14295806	MKL2	, A/G	0.34	0.024	2.90E-06	0	0.79	0.033	5.20E-07	0.027	1.10E-11	0.025	7.90E-05	0.027	2.90E-08	0.7
rs805256(16	87304743	CTU2/GALNS	A/C	0.79	0.039	1.40E-08	0	0.63	0.015	7.40E-02	0.029	3.30E-08	0.025	2.20E-03	0.032	1.10E-06	0.47
rs4640244	17	21224816	KCNJ12	A/G	0.61	0.028	2.00E-07	13.00	0.15	0.017	1.20E-02	0.024	2.30E-08	0.023	2.80E-04	0.025	1.70E-06	0.78
rs311049€	17	24941897	ANKRD13B	A/G	0.33	-0.023	1.60E-06	0	0.69	-0.021	1.10E-03	-0.022	7.30E-09	-0.03	1.10E-07	-0.016	6.40E-04	0.04
rs3764419	17	26188149	ATAD5/RNF135	A/C	0.39	-0.037	8.90E-16	16.60	0.09	-0.032	1.50E-07	-0.035	1.80E-21	-0.034	1.30E-09	-0.036	7.80E-16	0.67
rs1778008	6 17	27367395	LRRC37B	A/G	0.15	0.035	4.40E-08	10.44	0.21	0.017	5.50E-02	0.028	2.60E-08	0.03	9.40E-05	0.028	5.30E-06	0.85
rs1043515	17	34175722	PIP4K2B	A/G	0.45	-0.022	1.30E-06	0	0.80	-0.024	6.60E-05	-0.023	2.90E-10	-0.028	2.00E-07	-0.019	2.20E-05	0.15
rs4986172	17	40571807	ACBD4	T/C	0.35	-0.028	7.10E-09	30.83	0.003	-0.037	2.50E-09	-0.032	2.30E-16	-0.035	1.70E-09	-0.03	3.10E-10	0.41
rs2072153	17	44745013	ZNF652	C/G	0.3	0.026	6.70E-08	0	0.86	0.013	4.30E-02	0.021	3.50E-08	0.031	1.60E-07	0.016	8.30E-04	0.03
rs4605213	17	46599746	NME2	C/G	0.34	0.023	9.30E-07	0	0.88	0.018	5.90E-03	0.021	2.70E-08	0.026	5.40E-06	0.018	2.10E-04	0.21
rs227724	17	52133816	NOG	A/T	0.65	-0.027	1.20E-08	0	0.92	-0.034	6.60E-08	-0.03	7.40E-15	-0.035	8.10E-10	-0.027	1.10E-08	0.2
rs2079795	17	56851431	TBX2	, т/С	0.33	0.04	1.20E-16	0	0.81	0.04	1.50E-09	0.04	2.10E-24	0.033	7.80E-09	0.044	8.10E-20	0.12
rs2665838	17	59320197	CSH1/GH1	C/G	0.73	-0.037	2.00E-13	11.25	0.19	-0.052	7.00E-14	-0.042	5.10E-25	-0.042	2.20E-11	-0.042	3.00E-17	0.92

rs11867479	17	65601802	KCNJ16/KCNJ2	T/C	0.34	0.024	4.90E-07	0	0.87	0.026	5.40E-05	0.025	1.50E-10	0.023	7.00E-05	0.026	6.70E-08	0.68
rs4800452	18	18981609	CABLES1	T/C	0.79	0.048	2.40E-17	0	0.84	0.056	1.20E-14	0.051	4.20E-30	0.052	7.40E-15	0.05	8.40E-20	0.8
rs9967417	18	45213498	DYM	C/G	0.58	-0.038	2.60E-16	30.04	0.004	-0.039	3.20E-10	-0.038	9.30E-25	-0.041	3.40E-13	-0.036	1.30E-15	0.44
rs17782313	18	56002077	MC4R	T/C	0.76	-0.025	3.50E-06	13.42	0.14	-0.035	1.20E-06	-0.028	3.80E-11	-0.03	4.00E-06	-0.025	1.20E-06	0.55
rs12982744	19	2128193	DOT1L	C/G	0.6	-0.033	2.80E-12	0	0.97	-0.027	1.10E-05	-0.03	3.40E-16	-0.028	4.90E-07	-0.032	3.80E-12	0.6
rs7507204	19	3379834	NFIC	C/G	0.24	0.028	2.30E-07	0	0.88	0.049	2.10E-11	0.036	4.30E-16	0.025	1.70E-04	0.041	2.60E-14	0.05
rs891088	19	7135762	INSR	A/G	0.74	-0.025	1.70E-06	2.38	0.41	-0.035	1.80E-07	-0.029	2.40E-12	-0.025	6.10E-05	-0.031	1.10E-09	0.45
rs4072910	19	8550031	ADAMTS10	C/G	0.46	-0.029	2.50E-07	0	0.76	-0.034	2.20E-07	-0.031	3.60E-13	-0.025	1.30E-04	-0.033	3.10E-10	0.31
rs2279008	19	17144303	МҮО9В	T/C	0.74	0.031	2.40E-07	0	0.63	0.018	9.50E-03	0.025	2.50E-08	0.022	2.00E-03	0.027	5.00E-07	0.48
rs17318596	19	46628935	ATP5SL	A/G	0.36	0.029	3.00E-09	0	0.79	0.037	2.10E-08	0.032	5.00E-16	0.043	1.30E-13	0.024	8.00E-07	0.01
rs1741344	20	4049800	SMOX	T/C	0.63	-0.026	3.50E-08	16.74	0.09	-0.016	1.00E-02	-0.023	3.30E-09	-0.02	4.10E-04	-0.024	2.60E-07	0.55
rs2145272	20	6574218	BMP2	A/G	0.65	-0.039	5.90E-16	19.29	0.06	-0.04	4.60E-10	-0.039	2.10E-24	-0.039	1.50E-11	-0.04	2.30E-17	0.85
rs7274811	20	31796842	ZNF341	T/G	0.23	-0.04	6.80E-14	7.93	0.26	-0.042	1.10E-09	-0.041	5.90E-22	-0.044	1.60E-11	-0.039	1.30E-13	0.52
rs143384	20	33489170	GDF5	A/G	0.58	-0.064	4.90E-39	21.58	0.04	-0.061	9.10E-22	-0.063	1.00E-58	-0.066	9.30E-30	-0.061	8.30E-38	0.47
rs237743	20	47336426	ZNFX1	A/G	0.21	0.034	7.20E-10	0	0.69	0.053	3.10E-13	0.041	1.30E-20	0.035	1.20E-07	0.043	6.80E-16	0.28
rs2834442	21	34612656	KCNE2	A/T	0.65	0.027	7.30E-09	0	0.80	0.024	9.70E-05	0.026	5.10E-12	0.025	9.10E-06	0.026	1.00E-08	0.9
rs4821083	22	31386341	SYN3	T/C	0.84	0.033	4.80E-08	0	0.70	0.027	1.40E-03	0.031	3.10E-10	0.036	1.40E-06	0.028	4.20E-06	0.41

^a SNPs most likely to be representing a previously published height locus are highlighted in green.
^b Gene regions are named after the gene nearest to the index SNP. A near-by (within 500kb from the index SNP) OMIM height gene (defined as a gene that when mutated results in a monogenic skeletal growth defect) is also included if it is not the nearest. All OMIM height genes are highlighted in blue.
^c Alleles are indexed to the forward strand of NCBI Build 36.
^d All p-values are based on the inverse-variance weighted meta-analysis model (fixed effects).

Supplementary Table 2. Association results for 33 SNPs selected randomly among the 180 SNPs that reached genome-wide significance ($P=5x10^{-8}$) in the Stage 1 meta-analysis and genotyped in European American (N=2,181) and Poland (N=1,009) panels at tails of height distribution. Results are combined using a Cochran-Mantel-Haenszel test.

				GIANT hei	ght meta-anal	ysis		Results in e	xtreme height panel	s	
GIANT height	Ch	-	Effect	Other	Effect size	Stage 1+2 P-	Effect	Other		1-tailed	Commont
SNP	Chr	Position	allele	allele	(Stage 1)	value	allele	allele	OK [95% CI]	P-value	Comment
rs143384	20	33489170	А	G	-0.0639	9.954E-59	G	А	1.2 [1.08-1.33]	0.0002	Same direction, 1-tailed P-value < 0.05
rs2580816	2	232506210	т	С	-0.0412	5.837E-22	Т	С	0.8 [0.7-0.91]	0.0002	Same direction, 1-tailed P-value < 0.05
rs1738475	1	23409478	С	G	0.0216	2.952E-12	G	С	0.86 [0.78-0.96]	0.002	Same direction, 1-tailed P-value < 0.05
rs12474201	2	46774789	A	G	0.0233	2.581E-13	А	G	1.16 [1.04-1.29]	0.003	Same direction, 1-tailed P-value < 0.05
rs1351164	2	217980143	т	С	0.0279	2.081E-14	С	Т	0.84 [0.74-0.96]	0.004	Same direction, 1-tailed P-value < 0.05
rs822552	7	148281567	С	G	-0.0302	2.613E-08	G	С	1.15 [1.03-1.29]	0.007	Same direction, 1-tailed P-value < 0.05
rs7849585	9	138251691	т	G	0.0324	4.724E-14	Т	G	1.13 [1.02-1.26]	0.011	Same direction, 1-tailed P-value < 0.05
rs1257763	9	95933766	А	G	0.0685	9.865E-10	А	G	1.33 [1.04-1.69]	0.012	Same direction, 1-tailed P-value < 0.05
rs12534093	7	23469499	А	Т	-0.0298	2.019E-14	А	Т	0.87 [0.77-0.98]	0.012	Same direction, 1-tailed P-value < 0.05
rs2871865	15	97012419	С	G	0.0535	2.862E-21	G	С	0.83 [0.71-0.98]	0.013	Same direction, 1-tailed P-value < 0.05
rs310405	6	81857081	А	G	0.03	2.245E-13	G	А	0.89 [0.81-0.99]	0.016	Same direction, 1-tailed P-value < 0.05
rs10037512	5	88390431	т	С	0.0267	2.011E-18	С	Т	0.82 [0.69-0.99]	0.018	Same direction, 1-tailed P-value < 0.05
rs1814175	11	49515748	т	С	0.023	1.645E-08	Т	С	1.11 [1-1.24]	0.02	Same direction, 1-tailed P-value < 0.05
rs16942341	15	87189909	т	С	-0.1335	3.807E-27	Т	С	0.74 [0.55-1.01]	0.03	Same direction, 1-tailed P-value < 0.05
rs4665736	2	25041103	т	С	0.0335	7.29E-16	С	Т	0.92 [0.83-1.02]	0.05	Same direction, 1-tailed P-value < 0.05
rs6684205	1	216676325	А	G	-0.0328	1.473E-12	G	А	1.09 [0.97-1.22]	0.07	Same direction
rs7567288	2	134151294	Т	С	-0.0309	2.071E-12	С	Т	1.11 [0.97-1.26]	0.07	Same direction
rs7697556	4	73734177	т	С	0.0219	1.958E-14	Т	С	1.07 [0.96-1.18]	0.11	Same direction
rs11599750	10	101795432	т	С	-0.023	1.604E-13	Т	С	0.94 [0.85-1.05]	0.13	Same direction
rs2066807	12	55026949	С	G	-0.052	1.025E-13	G	С	1.12 [0.92-1.35]	0.13	Same direction
rs751543	9	118162163	Т	С	0.0287	6.537E-10	С	Т	0.94 [0.84-1.05]	0.13	Same direction
rs7532866	1	26614131	А	G	0.0222	3.372E-08	G	А	0.94 [0.85-1.05]	0.14	Same direction
rs11118346	1	217810342	т	С	-0.0264	1.879E-12	Т	С	0.96 [0.87-1.06]	0.20	Same direction
rs6439167	3	130533446	т	С	-0.0338	8.925E-15	Т	С	0.93 [0.75-1.15]	0.24	Same direction
rs274546	5	131727766	А	G	-0.0278	7.254E-16	А	G	0.97 [0.87-1.07]	0.26	Same direction
rs10863936	1	210304421	А	G	-0.022	1.922E-09	G	А	1.03 [0.93-1.14]	0.27	Same direction
rs9360921	6	76322362	т	G	-0.0479	2.552E-13	G	Т	1.05 [0.89-1.25]	0.28	Same direction
rs4986172	17	40571807	т	С	-0.0283	2.333E-16	Т	С	0.97 [0.87-1.08]	0.29	Same direction
rs9456307	6	158849430	А	Т	-0.0499	2.239E-09	А	Т	0.98 [0.78-1.22]	0.42	Same direction
rs572169	3	173648421	Т	С	0.0355	2.765E-18	Т	С	1.02 [0.84-1.24]	0.42	Same direction
	7	1 - 01 4 7 0	C	6	0.0220	2 2105 12	C	<u> </u>	0.00 [0.00 1.1]	0.61	Opposite direction (1-tailed P-value
rs2110001	/	150147955	Ĺ	G	-0.0328	3.319E-13	G	Ĺ	0.99 [0.88-1.1]	0.61	adjusted accordingly)
****	10	07204742	۸	c	0.0202	2 2245 00	C	^		0.80	Opposite direction (1-tailed P-value
188052560	10	ō/3U4/43	A	L	0.0392	3.324E-U8	L	A	1.08 [0.95-1.23]	0.89	adjusted accordingly)

Supplementary Table 3. Family-based association results for the 180 confirmed height SNPs in the Framingham Heart Study (FHS) and the Erasmus Rucphen Family (ERF) study. For each study, and the meta-analysis FHS+ERF, we compare the direction of effect observed with respect to the effect of the height-increasing allele in the GIANT meta-analysis.

	GIAN	Г meta-an	alysis	FHS (fa	mily-based	test)	ERF (family-ba	ised test)	Meta-analysis (family-base	FHS+ERF d test)
SNP	Height			Direction of		BETA	Direction of		Direction of	-
	Increasing	BETA	P-value	effect relative	P-value	relative to	effect relative	P-value	effect relative	P-value
	allele			to GIANT		GIANT	to GIANT		to GIANT	
rs724016	G	0.067	4.5E-52	Same	0.02	0.066	Same	0.61	Same	0.02
rs143384	G	0.064	4.9E-39	Same	3.5E-03	0.081	Same	0.65	Same	4.8E-03
rs1351394	Т	0.054	7.8E-34	Same	1.3E-03	0.089	Same	0.73	Same	2.3E-03
rs7689420	С	0.069	1.4E-29	Same	0.06	0.068	Same	0.03	Same	0.01
rs42235	Т	0.055	7.3E-28	Opposite	0.91	-0.003	Opposite	0.85	Opposite	0.85
rs6449353	Т	0.071	1.3E-27	Same	0.04	0.070	Same	0.43	Same	0.03
rs806794	А	0.053	5.5E-26	Same	1.7E-03	0.106	Same	0.02	Same	1.2E-04
rs3118905	G	0.052	3.0E-25	Same	0.36	0.027	Same	0.57	Same	0.28
rs798489	С	0.052	8.5E-25	Same	0.09	0.052	Same	0.04	Same	0.02
rs11107116	Т	0.052	1.7E-23	Same	0.05	0.065	Same	0.33	Same	0.03
rs1046934	С	0.046	6.4E-22	Same	0.03	0.062	Same	0.89	Same	0.05
rs11259936	С	0.042	2.2E-21	Same	0.06	0.053	Same	0.90	Same	0.09
rs3791675	С	0.050	2.4E-20	Same	0.67	0.014	Same	0.25	Same	0.38
rs7763064	G	0.045	6.4E-19	Same	0.43	0.023	Same	0.23	Same	0.22
rs2780226	С	0.079	1.0E-18	Same	6.4E-04	0.171	Same	0.02	Same	4.9E-05
rs11205277	G	0.045	1.2E-18	Same	0.12	0.043	Same	2.0E-03	Same	0.01
rs7759938	С	0.042	8.7E-18	Same	0.15	0.041	Same	0.65	Same	0.13
rs16942341	С	0.134	1.3E-17	Same	2.5E-03	0.236	Same	0.59	Same	3.1E-03
rs1708299	А	0.042	1.5E-17	Same	4.5E-03	0.090	Same	0.29	Same	2.6E-03
rs4800452	Т	0.048	2.4E-17	Same	0.01	0.082	Same	0.49	Same	0.01
rs6470764	С	0.047	5.9E-17	Same	0.22	0.041	Same	0.87	Same	0.24
rs2079795	Т	0.040	1.2E-16	Same	0.09	0.049	Same	0.69	Same	0.09
rs9967417	G	0.038	2.6E-16	Same	0.22	0.031	Same	0.67	Same	0.20
rs1490384	Т	0.037	3.2E-16	Same	0.03	0.060	Opposite	0.45	Same	0.10
rs2145272	G	0.039	5.9E-16	Same	0.01	0.069	Same	0.88	Same	0.02
rs3812163	Т	0.037	6.7E-16	Same	0.80	0.007	Same	0.18	Same	0.42
rs3764419	С	0.037	8.9E-16	Same	0.09	0.046	Same	0.49	Same	0.07
rs7460090	Т	0.055	9.6E-16	Opposite	0.96	-0.002	Same	0.19	Same	0.60
rs788867	G	0.039	1.8E-15	Same	0.56	0.017	Same	0.36	Same	0.36
rs1173727	Т	0.036	4.0E-15	Same	0.03	0.058	Same	0.40	Same	0.02
rs2284746	G	0.035	5.6E-15	Same	0.69	0.011	Same	0.09	Same	0.28
rs7466269	А	0.036	1.2E-14	Same	0.20	0.036	Same	0.05	Same	0.04
rs473902	т	0.074	1.7E-14	Same	0.26	0.056	Same	0.83	Same	0.26
rs2256183	А	0.035	2.7E-14	Same	0.79	0.008	Opposite	0.94	Same	0.84
rs17346452	С	0.038	3.3E-14	Same	0.92	0.003	Same	0.21	Same	0.52
rs7274811	G	0.040	6.8E-14	Same	0.01	0.080	Same	0.42	Same	0.01

	GIAN	۲ meta-an	alysis	FHS (fa	mily-based	test)	ERF (family-ba	sed test)	Meta-analysis (family-base	FHS+ERF d test)
SNP	Height Increasing allele	BETA	P-value	Direction of effect relative to GIANT	P-value	BETA relative to GIANT	Direction of effect relative to GIANT	P-value	Direction of effect relative to GIANT	P-value
rs2638953	С	0.036	8.4E-14	Same	0.07	0.056	Opposite	0.97	Same	0.11
rs572169	т	0.036	9.9E-14	Same	0.60	0.015	Same	0.03	Same	0.17
rs4665736	т	0.034	1.4E-13	Same	0.28	0.030	Same	0.11	Same	0.09
rs4965598	С	0.035	1.4E-13	Same	0.02	0.069	Same	0.52	Same	0.02
rs2665838	G	0.037	2.0E-13	Same	0.09	0.051	Same	0.40	Same	0.06
rs9428104	G	0.038	8.9E-13	Same	0.06	0.057	Opposite	0.19	Same	0.27
rs2871865	С	0.054	1.1E-12	Same	0.10	0.074	Same	0.08	Same	0.02
rs17511102	т	0.060	1.3E-12	Same	0.23	0.062	Same	0.50	Same	0.17
rs2580816	С	0.041	1.8E-12	Same	0.37	0.031	Opposite	0.67	Same	0.54
rs2093210	С	0.034	2.3E-12	Same	0.20	0.036	Same	0.07	Same	0.05
rs12982744	G	0.033	2.8E-12	Same	0.69	0.012	Opposite	0.46	Same	0.97
rs6569648	С	0.036	8.9E-12	Same	0.06	0.058	Same	0.46	Same	0.04
rs6457821	С	0.121	1.8E-11	Opposite	0.93	-0.009	Same	0.26	Same	0.69
rs6684205	G	0.033	2.0E-11	Same	0.47	0.021	Same	0.08	Same	0.16
rs7849585	Т	0.032	3.4E-11	Opposite	0.91	-0.003	Same	0.19	Same	0.64
rs310405	А	0.030	3.6E-11	Opposite	0.81	-0.007	Same	0.16	Same	0.70
rs10748128	Т	0.035	3.8E-11	Opposite	0.65	-0.014	Same	0.35	Same	0.99
rs1950500	Т	0.032	3.9E-11	Same	0.28	0.033	Same	0.29	Same	0.15
rs10770705	А	0.031	4.6E-11	Opposite	0.29	-0.031	Opposite	0.60	Opposite	0.24
rs9360921	G	0.048	4.6E-11	Same	0.52	0.029	Opposite	0.65	Same	0.70
rs12680655	С	0.030	4.8E-11	Opposite	0.50	-0.019	Same	0.39	Opposite	0.82
rs12470505	Т	0.048	1.3E-10	Same	0.22	0.053	Same	0.45	Same	0.15
rs7027110	А	0.034	1.3E-10	Same	0.16	0.046	Opposite	0.81	Same	0.24
rs2856321	G	0.030	1.5E-10	Same	0.32	0.028	Same	0.56	Same	0.25
rs720390	А	0.031	1.6E-10	Same	0.10	0.048	Same	0.19	Same	0.04
rs6473015	С	0.032	1.7E-10	Same	0.55	0.017	Opposite	0.62	Same	0.74
rs10838801	G	0.031	1.8E-10	Same	0.01	0.075	Same	0.04	Same	1.7E-03
rs5742915	С	0.031	3.0E-10	Same	0.05	0.059	Same	0.25	Same	0.02
rs4282339	G	0.035	3.4E-10	Same	0.34	0.032	Same	0.75	Same	0.32
rs2154319	С	0.034	4.3E-10	Same	0.27	0.035	Same	0.01	Same	0.03
rs7319045	А	0.029	4.5E-10	Same	0.01	0.078	Same	0.57	Same	0.01
rs889014	С	0.029	4.5E-10	Same	0.38	0.025	Same	0.70	Same	0.34
rs6879260	С	0.028	5.6E-10	Same	0.99	0.000	Same	0.13	Same	0.50
rs9969804	А	0.028	5.6E-10	Same	0.47	0.021	Opposite	0.71	Same	0.62
rs237743	А	0.034	7.2E-10	Same	0.24	0.041	Same	0.05	Same	0.06
rs6439167	С	0.034	7.2E-10	Same	0.12	0.049	Same	0.73	Same	0.12
rs274546	G	0.028	8.5E-10	Same	0.01	0.066	Opposite	0.41	Same	0.07
rs12153391	С	0.033	8.7E-10	Same	0.55	0.018	Same	0.15	Same	0.25
rs7155279	G	0.029	8.9E-10	Opposite	0.74	-0.009	Same	0.53	Opposite	0.98
rs2110001	G	0.033	9.8E-10	Same	0.15	0.042	Same	0.03	Same	0.03

	GIAN	Г meta-an	alysis	FHS (fa	mily-based	test)	ERF (family-ba	sed test)	Meta-analysis (family-base	FHS+ERF d test)
SNP	Height Increasing allele	BETA	P-value	Direction of effect relative to GIANT	<i>P</i> -value	BETA relative to GIANT	Direction of effect relative to GIANT	P-value	Direction of effect relative to GIANT	P-value
rs422421	С	0.033	1.4E-09	Same	9.0E-05	0.126	Same	0.05	Same	1.2E-05
rs543650	G	0.032	1.4E-09	Same	0.27	0.037	Same	0.51	Same	0.20
rs634552	Т	0.041	1.4E-09	Same	0.74	0.014	Opposite	0.10	Opposite	0.68
rs11144688	G	0.055	1.5E-09	Same	0.63	0.022	Same	0.34	Same	0.40
rs526896	Т	0.032	1.9E-09	Same	0.97	0.001	Opposite	0.37	Opposite	0.72
rs1809889	Т	0.032	1.9E-09	Opposite	0.48	-0.023	Same	0.10	Same	0.92
rs11118346	С	0.026	2.2E-09	Same	0.04	0.057	Same	0.68	Same	0.04
rs17318596	А	0.029	3.0E-09	Same	0.72	0.010	Opposite	0.62	Same	0.92
rs10037512	Т	0.027	3.8E-09	Same	0.06	0.051	Same	0.73	Same	0.07
rs3782089	С	0.058	5.9E-09	Same	0.99	0.001	Same	0.57	Same	0.80
rs11684404	С	0.027	6.4E-09	Same	0.20	0.038	Same	0.36	Same	0.12
rs4986172	С	0.028	7.1E-09	Same	0.35	0.026	Opposite	0.12	Same	0.88
rs2834442	А	0.027	7.3E-09	Same	0.08	0.049	Opposite	0.82	Same	0.13
rs11958779	G	0.028	8.0E-09	Opposite	0.80	-0.008	Opposite	0.80	Opposite	0.73
rs2066807	G	0.052	9.6E-09	Same	0.03	0.129	Opposite	0.44	Same	0.10
rs10799445	А	0.031	1.2E-08	Same	0.51	0.021	Opposite	0.50	Same	0.77
rs227724	Т	0.027	1.2E-08	Same	0.15	0.043	Opposite	0.87	Same	0.23
rs8052560	А	0.039	1.4E-08	Same	0.01	0.031	Opposite	0.34	Same	0.06
rs9863706	С	0.030	1.5E-08	Same	0.01	0.086	Opposite	0.57	Same	0.03
rs1325598	G	0.026	1.6E-08	Same	0.03	0.058	Same	0.62	Same	0.03
rs1582931	G	0.025	2.1E-08	Same	0.01	0.074	Same	0.38	Same	0.01
rs2629046	Т	0.025	2.2E-08	Same	0.64	0.013	Same	0.62	Same	0.52
rs9472414	Т	0.031	2.4E-08	Same	0.33	0.094	Same	0.48	Same	0.24
rs2145998	Т	0.025	2.7E-08	Same	0.35	0.027	Opposite	0.80	Same	0.46
rs2237886	т	0.043	3.1E-08	Same	0.02	0.117	Same	0.52	Same	0.02
rs9844666	G	0.028	3.1E-08	Same	0.25	0.037	Opposite	0.25	Same	0.60
rs3129109	С	0.026	3.3E-08	Opposite	0.43	-0.022	Opposite	0.72	Opposite	0.38
rs10152591	А	0.045	3.5E-08	Same	0.20	0.063	Same	0.10	Same	0.06
rs1741344	С	0.026	3.5E-08	Same	0.05	0.057	Same	0.26	Same	0.02
rs2336725	С	0.026	3.5E-08	Same	0.05	0.051	Same	0.63	Same	0.05
rs26868	А	0.030	3.5E-08	Same	0.79	0.008	Same	0.58	Same	0.63
rs2341459	Т	0.028	3.6E-08	Same	0.12	0.050	Opposite	0.82	Same	0.19
rs6457620	G	0.024	3.6E-08	Same	0.93	0.003	Opposite	0.69	Opposite	0.93
rs4470914	т	0.033	3.8E-08	Same	1.00	0.000	Same	1.00	Same	1.00
rs17780086	А	0.035	4.4E-08	Same	0.31	0.041	Opposite	0.97	Same	0.36
rs1013209	С	0.029	4.5E-08	Opposite	0.74	-0.011	Opposite	0.94	Opposite	0.74
rs751543	т	0.029	4.5E-08	Same	0.95	0.002	Opposite	0.02	Opposite	0.32
rs17081935	т	0.031	4.8E-08	Opposite	0.75	-0.011	Same	0.27	Same	0.85
rs4821083	т	0.033	4.8E-08	Same	0.07	0.063	Same	0.54	Same	0.06
rs12534093	Т	0.030	5.6E-08	Same	0.59	0.018	Opposite	0.97	Same	0.64

	GIAN	۲ meta-an	alysis	FHS (fa	mily-based	test)	ERF (family-ba	sed test)	Meta-analysis (family-base	FHS+ERF d test)
SNP	Height Increasing allele	BETA	P-value	Direction of effect relative to GIANT	P-value	BETA relative to GIANT	Direction of effect relative to GIANT	P-value	Direction of effect relative to GIANT	P-value
rs2072153	<u> </u>	0.026	6 7F-08	Same	0.41	0.026	Same	0.42	Same	0 27
rs7567288	C	0.020	6 7E-08	Opposite	0.93	-0.003	Same	0.90	Opposite	0.27
rs2247341	Δ	0.025	6.8E-08	Same	0.55	0.022	Same	0.12	Same	0.50
rs7926971	G	0.023	7 3F-08	Same	1 6F-03	0.022	Opposite	0.04	Same	0.10
rs7332115	G	0.024	7.6E-08	Same	0.24	0.033	Same	0.15	Same	0.09
rs1047014	C	0.029	1 1F-07	Same	0.24	0.028	Opposite	0.49	Same	0.65
rs17806888	т	0.040	1.1E 07	Onnosite	0.04	0.077	Same	0.42	Same	0.03
rs2597513	C	0.039	1.1E 07 1 1E-07	Same	0.04	0.078	Same	0.45	Same	0.05
rs7971536	т	0.000	1.1E 07 1 1E-07	Same	0.00	0.036	Same	0.45	Same	0.00
rs8181166	C	0.025	1.1E 07 1 1E-07	Onnosite	0.17	-0.025	Onnosite	0.82	Onnosite	0.17
rs822552	G	0.025	1.1E 07 1.3E-07	Opposite	0.55	-0.025	Opposite	0.95	Opposite	0.55
rs12694997	G	0.027	1.8E-07	Same	0.05	0.063	Opposite	0.20	Same	0.47
rs4640244	Δ	0.027	2 0F-07	Onnosite	0.05	0.003	Same	0.05	Same	0.22
rs7178474	C C	0.020	2.02 07 2.2F-07	Same	0.07	0.015	Onnosite	0.03	Same	0.21
rs7507204	C	0.024	2.22 07 2 3F-07	Same	0.02	0.071	Same	0.51	Same	0.10
rs11648796	G	0.020	2.32 07 2 4F-07	NA	1.00	NA	Same	0.65	Same	0.65
rs2279008	т	0.031	2.4E-07	Same	0.44	0.027	Same	0.05	Same	0.05
rs961764	G	0.023	2.12 07 2.4F-07	Same	0.16	0.038	Same	0.13	Same	0.10
rs4072910	G	0.029	2.5E-07	NA	1 00	NA	Same	0.49	Same	0.49
rs13088462	C	0.025	3 1F-07	Same	0.96	0.003	Opposite	0.45	Opposite	0.45
rs2778031	т	0.027	3.6E-07	Same	0.04	0.066	Same	0.59	Same	0.02
rs1351164	Т	0.028	3.7E-07	Same	0.78	0.010	Same	0.96	Same	0.78
rs1330	т	0.024	4 4F-07	Opposite	0.49	-0.018	Same	0.58	Opposite	0.70
rs9456307	Т	0.050	4.6F-07	Opposite	0.56	-0.032	Same	0.94	Opposite	0.62
rs11867479	т	0.024	4.9F-07	Same	0.07	0.051	Same	0.95	Same	0.10
rs7864648	T	0.025	4.9E-07	Opposite	0.67	-0.013	Same	0.44	Opposite	0.97
rs17391694	т	0.040	5.9E-07	Opposite	0.43	-0.042	Same	0.51	Opposite	0.67
rs10863936	G	0.022	6.2E-07	Same	0.02	0.060	Opposite	0.90	Same	0.05
rs654723	A	0.024	6.7E-07	Same	0.38	0.024	Opposite	0.86	Same	0.48
rs7567851	C	0.041	7.5E-07	Same	0.32	0.046	Opposite	0.93	Same	0.40
rs11599750	C	0.023	7.6E-07	Same	0.38	0.025	Same	0.18	Same	0.17
rs7112925	C	0.023	8.5E-07	Same	0.23	0.034	Same	0.08	Same	0.06
rs1046943	A	0.022	8.6E-07	Same	0.42	0.023	Same	0.28	Same	0.23
rs9835332	G	0.022	8.7E-07	Same	0.13	0.038	Same	0.29	Same	0.07
rs4605213	C	0.023	9.3E-07	Opposite	0.73	-0.011	Same	0.49	Opposite	0.99
rs12474201	A	0.023	1.0E-06	Same	0.38	0.025	Opposite	0.37	Same	0.69
rs862034	G	0.023	1.1E-06	Same	0.05	0.059	Same	0.43	Same	0.03
rs1043515	Ğ	0.022	1.3E-06	Same	0.15	0.039	Same	0.05	Same	0.03
rs7697556	Т	0.022	1.3E-06	Same	0.02	0.063	Opposite	0.62	Same	0.07
rs7909670	С	0.022	1.3E-06	Opposite	0.77	-0.008	Same	0.71	Opposite	0.92

	GIAN	۲ meta-an	alysis	FHS (fai	mily-based	test)	ERF (family-ba	sed test)	Meta-analysis (family-base	FHS+ERF d test)
SNP	Height			Direction of		BETA	Direction of		Direction of	
	Increasing allele	BETA	P-value	effect relative to GIANT	P-value	relative to GIANT	effect relative to GIANT	P-value	effect relative to GIANT	P-value
rs1468758	С	0.026	1.5E-06	Same	0.76	0.009	Opposite	0.88	Same	0.84
rs3110496	G	0.023	1.6E-06	Same	0.01	0.078	Same	0.12	Same	0.00
rs10874746	С	0.022	1.7E-06	Opposite	0.29	-0.030	Same	0.03	Opposite	0.98
rs12902421	С	0.069	1.7E-06	Same	0.11	0.145	Opposite	0.45	Same	0.27
rs425277	Т	0.024	1.7E-06	Same	0.09	0.052	Same	0.99	Same	0.13
rs6699417	т	0.022	1.7E-06	Same	0.85	0.006	Opposite	0.51	Opposite	0.91
rs891088	G	0.025	1.7E-06	Opposite	0.70	-0.012	Same	0.48	Opposite	0.96
rs1738475	С	0.022	1.9E-06	Same	0.24	0.030	Opposite	0.90	Same	0.32
rs4601530	С	0.024	2.0E-06	Opposite	0.79	-0.008	Same	0.69	Opposite	0.95
rs6714546	G	0.025	2.2E-06	Same	0.16	0.045	Opposite	0.78	Same	0.25
rs955748	G	0.024	2.2E-06	Same	0.57	0.018	Opposite	0.59	Same	0.78
rs10010325	А	0.021	2.3E-06	Same	0.45	0.019	Same	0.33	Same	0.27
rs1257763	А	0.069	2.5E-06	Same	0.02	0.150	Opposite	0.71	Same	0.05
rs16964211	G	0.051	2.5E-06	Same	0.94	0.005	Opposite	0.14	Opposite	0.57
rs1814175	Т	0.023	2.6E-06	Same	0.43	0.023	Same	0.01	Same	0.07
rs6959212	С	0.023	2.8E-06	Same	0.60	0.014	Same	0.19	Same	0.30
rs1659127	А	0.024	2.9E-06	Opposite	0.41	-0.023	Opposite	0.16	Opposite	0.17
rs7853377	G	0.026	3.1E-06	Same	0.90	0.004	Opposite	0.92	Same	0.94
rs7532866	А	0.022	3.3E-06	Same	0.24	0.033	Opposite	0.78	Same	0.35
rs17782313	С	0.025	3.5E-06	Opposite	0.60	-0.017	Same	0.28	Same	1.00
rs13177718	С	0.041	4.1E-06	Opposite	0.51	-0.033	Opposite	0.70	Opposite	0.45
rs5017948	А	0.027	4.7E-06	Same	8.9E-04	0.126	Same	0.07	Same	1.6E-04
rs1570106	С	0.026	4.9E-06	Same	0.59	0.019	Opposite	0.14	Opposite	0.87
rs494459	т	0.021	4.9E-06	Opposite	0.14	-0.040	Same	0.10	Opposite	0.56

Supplementary Table 4. Estimated number of height loci for each of the effect sizes observed in Stage 2 given the power to detect the association in Stage 1

	SND	MAE	Mean	Standardized	Power	Estimated number of
	SINF	WAF	Difference	Effect size	Power	loci [⁺]
1	rs1325598	0.435	-0.016	1.18E-04	0.0151	74.5
2	rs9472414	0.217	-0.019	1.21E-04	0.0169	63.4
3	rs7155279	0.356	-0.016	1.22E-04	0.0171	62.3
4	rs1741344	0.375	0.016	1.23E-04	0.0178	59.3
5	rs1013209	0.252	-0.019	1.30E-04	0.0226	47.6
6	rs12470505	0.095	-0.028	1.35E-04	0.0263	41.5
7	rs6684205	0.294	0.019	1.45E-04	0.0350	30.9
8	rs2341459	0.279	0.020	1.53E-04	0.0434	24.6
9	rs4470914	0.178	0.023	1.53E-04	0.0436	24.5
10	rs6457821	0.018	-0.068	1.65E-04	0.0587	17.7
11	rs751543	0.275	-0.021	1.68E-04	0.0619	16.9
12	rs10838801	0.307	0.020	1.70E-04	0.0655	15.9
13	rs/319045	0.403	0.019	1./2E-04	0.0681	15.2
14	rs1582931	0.480	-0.019	1.82E-04	0.0848	12.2
15	rs4821083	0.151	-0.027	1.91E-04	0.1018	10.1
16	rs10152591	0.091	-0.034	1.93E-04	0.1044	9.8
10	15310405	0.478	-0.020	2.002-04	0.1185	8./ 7.2
10	150473015	0.274	0.023	2.10E-04	0.1420	7.3
19	rc121E2201	0.113	0.033	2.15E-04	0.1529	6.2
20	rs12155591	0.250	-0.024	2.10E-04	0.1611	0.5
21	rs7027110	0.433	-0.021	2.210-04	0.1001	6.0
22	rs215/1310	0.230	0.025	2.21L-04	0.1032	5.5
23	rs17081935	0.244	0.025	2.27E-04	0.1855	4.2
25	rs11118346	0.205	-0.023	2.48E 04	0.2721	3.7
26	rs7849585	0 333	0.023	2.57E 04	0.2750	3.7
27	rs2629046	0.440	-0.023	2.63E-04	0.2906	3.5
28	rs422421	0.216	-0.028	2.64E-04	0.2927	3.5
29	rs2834442	0.343	-0.024	2.68E-04	0.3079	3.3
30	rs12680655	0.413	-0.024	2.75E-04	0.3286	3.1
31	rs7466269	0.370	-0.024	2.78E-04	0.3381	3.0
32	rs2638953	0.318	-0.026	2.82E-04	0.3529	2.9
33	rs11958779	0.306	0.026	2.90E-04	0.3783	2.7
34	rs634552	0.146	0.035	2.99E-04	0.4087	2.5
35	rs11144688	0.106	-0.040	3.03E-04	0.4230	2.4
36	rs720390	0.387	0.026	3.28E-04	0.5092	2.0
37	rs526896	0.279	-0.029	3.29E-04	0.5119	2.0
38	rs2110001	0.319	0.028	3.31E-04	0.5180	2.0
39	rs12982744	0.389	0.027	3.41E-04	0.5519	1.8
40	rs473902	0.079	-0.050	3.62E-04	0.6161	1.6
41	rs3782089	0.060	-0.057	3.67E-04	0.6317	1.6
42	rs9863706	0.216	-0.033	3.69E-04	0.6374	1.6
43	rs572169	0.311	0.030	3.73E-04	0.6494	1.5
44	rs2145998	0.499	0.027	3.75E-04	0.6564	1.5
45	rs2856321	0.358	0.029	3.76E-04	0.6587	1.5
46	rs2336725	0.450	0.028	3.85E-04	0.6842	1.5
4/	rs10/99445	0.235	-0.033	3.91E-04	0.6998	1.4
48	rs11684404	0.349	0.029	3.93E-04	0.7038	1.4
49	150459107 rc1400294	0.204	-0.035	2.095.04	0.7103	1.4
50	rs11820102	0.455	0.028	Δ.36E-04	0.7109	1.4
52	rs2093210	0.405	0.029	4.08F-04	0.7431	1.3

	SNP	MAF	Mean	Standardized	Power	Estimated number of
53	rs2066807	0.070	0.058	4 43E-04	0.8183	1 2
54	rs2237886	0.070	0.050	4.43E-04	0.8359	1.2
55	rs4282339	0.203	-0.038	4.57E-04	0.8426	1.2
56	rs889014	0.200	-0.032	4.72F-04	0.8669	1.2
57	rs5742915	0.451	0.032	4.72E 04	0.8682	1.2
58	rs274546	0.406	-0.032	4.88F-04	0.8890	1.1
59	rs3764419	0.388	-0.032	4.89F-04	0.8910	1.1
60	rs1173727	0.407	0.032	4.94E-04	0.8974	1.1
61	rs227724	0.355	0.034	5.29E-04	0.9332	1.1
62	rs9969804	0.447	0.033	5.52E-04	0.9500	1.1
63	rs17511102	0.084	0.061	5.64E-04	0.9576	1.1
64	rs10770705	0.326	0.036	5.66E-04	0.9589	1.0
65	rs1950500	0.287	0.038	5.79E-04	0.9655	1.0
66	rs1708299	0.300	0.038	5.91E-04	0.9709	1.0
67	rs3812163	0.448	0.035	6.13E-04	0.9788	1.0
68	rs17318596	0.347	0.037	6.27E-04	0.9828	1.0
69	rs4986172	0.349	-0.037	6.35E-04	0.9848	1.0
70	rs7274811	0.240	-0.042	6.50E-04	0.9878	1.0
71	rs543650	0.415	-0.037	6.76E-04	0.9919	1.0
72	rs2079795	0.322	0.040	6.88E-04	0.9933	1.0
73	rs6457620	0.482	0.037	6.98E-04	0.9944	1.0
74	rs2145272	0.346	0.040	7.06E-04	0.9950	1.0
75	rs9967417	0.409	0.039	7.16E-04	0.9958	1.0
76	rs798489	0.301	-0.042	7.43E-04	0.9973	1.0
77	rs2780226	0.081	0.072	7.62E-04	0.9981	1.0
78	rs26868	0.455	0.040	7.74E-04	0.9984	1.0
79	rs2871865	0.115	-0.062	7.81E-04	0.9986	1.0
80	rs17346452	0.269	0.045	7.83E-04	0.9987	1.0
81	rs2580816	0.183	-0.051	7.91E-04	0.9988	1.0
82	rs10037512	0.449	-0.040	7.96E-04	0.9989	1.0
83	rs1046934	0.363	0.042	7.96E-04	0.9989	1.0
84	rs6569648	0.231	0.047	7.99E-04	0.9990	1.0
85	rs3129109	0.379	-0.041	8.06E-04	0.9991	1.0
86	rs10748128	0.351	0.042	8.07E-04	0.9991	1.0
87	rs9428104	0.241	-0.048	8.39E-04	0.9995	1.0
88	rs16942341	0.029	-0.124	8.52E-04	0.9996	1.0
89	rs11107116	0.228	0.050	8.68E-04	0.9997	1.0
90	rs7460090	0.127	-0.064	9.18E-04	0.9999	1.0
91	rs237743	0.214	0.053	9.26E-04	0.9999	1.0
92	rs6470764	0.189	-0.056	9.72E-04	1.0000	1.0
93	rs4800452	0.214	-0.056	1.05E-03	1.0000	1.0
94	rs/8886/	0.320	0.050	1.07E-03	1.0000	1.0
95	rs2665838	0.268	0.052	1.07E-03	1.0000	1.0
96	rs7759938	0.309	0.051	1.10E-03	1.0000	1.0
97	rs806794	0.315	-0.051	1.10E-03	1.0000	1.0
98	rs11259936	0.481	-0.047	1.12E-03	1.0000	1.0
99 100	ISTT2022//	0.416	0.048	1.13E-03	1.0000	1.0
101	152284740	0.482	-0.049	1.20E-03	1.0000	1.0
101	157703004 rc2701675	0.291	-0.055	1.23E-03	1.0000	1.0
102	122/210/2	0.230	-0.059	1.25E-03	1.0000	1.0
103	152230183 rc42225	0.450	0.051	1.29E-03	1.0000	1.0
104	1542233 rs6110252	0.308	-0.002	1.02E-03	1.0000	1.0
105	rc211200E	0.149	-0.062	1.031-03	1 0000	1.0
107	rs7689420	0.165	-0.080	1.76E-03	1.0000	1.0

	SNP	MAF	Mean Difference	Standardized Effect size	Power	Estimated number of ${\sf loci}^{^\dagger}$
108	rs143384	0.435	0.061	1.83E-03	1.0000	1.0
109	rs1351394	0.496	0.073	2.63E-03	1.0000	1.0
110	rs724016	0.443	0.075	2.78E-03	1.0000	1.0
	Estimated #	of total loci				697.3
Tota	al phenotypic va	riance explain	ed (%)			15.7
Тс	otal genetic varia	19.6				

[†] Projections are made only for effect sizes for SNPs that reached *P*<5x10⁻⁸ in Stage 1 and had at least 1% power.

Supplementary Table 5. Dominant, recessive and dominance deviation results for nominally significant (dominance deviation P<0.05) lead SNPs at the 207 loci with P<5x10⁻⁶ in Stage 1. The effect allele is the height increasing allele from Stage 1. Only SNPs with a dominance deviation P<0.05 are presented. The analysis is based on a subset of 103,034 individuals from Stage 1. None of the results remain significant at P<0.05 after correcting for the number of tests performed.

Marker	Effect	Other	Additive	Additive	Dominant beta (SE)	Dominant P	Recessive	Recessive P	Dom Dev	Dom Dev
	allele	Allele	beta (SE)	Р			beta (SE)		beta (SE)	Р
rs1047014	С	Т	0.031 (0.006)	2.2x10 ⁻⁰⁸	0.041 (0.006)	9.3x10 ⁻¹¹	0.017 (0.013)	0.1991	0.026 (0.008)	0.002
rs17122670	А	G	0.032 (0.007)	8.8x10 ⁻⁰⁶	0.038 (0.008)	3.6x10 ⁻⁰⁷	-0.015 (0.027)	0.5645	0.044 (0.015)	0.003
rs425277	Т	С	0.027 (0.005)	7.5x10 ⁻⁰⁸	0.023 (0.006)	2.0x10 ⁻⁰⁴	0.064 (0.012)	3.0x10 ⁻⁰⁸	-0.021 (0.008)	0.005
rs12982744	G	С	0.033 (0.005)	2.0×10^{-12}	0.049 (0.007)	9.1x10 ⁻¹⁴	0.029 (0.009)	6.8x10 ⁻⁰⁴	0.018 (0.006)	0.006
rs1257763	А	G	0.077 (0.014)	4.0x10 ⁻⁰⁸	0.054 (0.012)	1.3x10 ⁻⁰⁵	0.358 (0.094)	1.3x10 ⁻⁰⁴	-0.132 (0.049)	0.007
rs2408058	G	А	0.035 (0.006)	8.4x10 ⁻⁰⁹	0.102 (0.02)	2.5x10 ⁻⁰⁷	0.033 (0.007)	2.5x10 ⁻⁰⁶	0.031 (0.012)	0.008
rs1708299	А	G	0.046 (0.005)	3.2x10 ⁻²²	0.048 (0.006)	2.0×10^{-14}	0.087 (0.01)	6.0×10^{-17}	-0.019 (0.007)	0.009
rs13177718	С	Т	0.046 (0.009)	1.8x10 ⁻⁰⁷	0.164 (0.04)	4.3x10 ⁻⁰⁵	0.038 (0.009)	1.6x10 ⁻⁰⁵	0.055 (0.022)	0.012
rs9456307	Т	А	0.056 (0.01)	1.7x10 ⁻⁰⁸	0.221 (0.053)	3.3x10 ⁻⁰⁵	0.05 (0.01)	8.5x10 ⁻⁰⁷	0.071 (0.028)	0.013
rs7601531	Т	С	0.022 (0.005)	2.8x10 ⁻⁰⁶	0.041 (0.008)	6.5x10 ⁻⁰⁷	0.018 (0.007)	7.0x10 ⁻⁰³	0.015 (0.006)	0.019
rs2341459	Т	С	0.031 (0.005)	7.1x10 ⁻¹⁰	0.041 (0.006)	5.3x10 ⁻¹¹	0.028 (0.012)	1.9×10^{-02}	0.017 (0.008)	0.028
rs34651	С	Т	0.057 (0.009)	4.0×10^{-11}	0.058 (0.009)	1.5x10 ⁻¹¹	0.017 (0.038)	0.65	0.044 (0.021)	0.032
rs1351394	Т	С	0.059 (0.004)	3.1x10 ⁻⁴⁰	0.069 (0.007)	8.6x10 ⁻²²	0.085 (0.007)	1.7x10 ⁻³²	-0.013 (0.006)	0.032
rs17318596	А	G	0.032 (0.005)	3.5×10^{-11}	0.043 (0.006)	1.7x10 ⁻¹¹	0.029 (0.009)	8.4x10 ⁻⁰⁴	0.014 (0.007)	0.036
rs4072910	G	С	0.033 (0.006)	6.0x10 ⁻⁰⁹	0.051 (0.009)	1.2x10 ⁻⁰⁸	0.028 (0.008)	5.1x10 ⁻⁰⁴	0.015 (0.007)	0.036
rs42235	Т	С	0.065 (0.005)	2.5x10 ⁻³⁸	0.067 (0.006)	2.5x10 ⁻²⁶	0.108 (0.011)	3.7x10 ⁻²⁴	-0.015 (0.007)	0.037
rs11648796	G	А	0.028 (0.006)	2.3x10 ⁻⁰⁶	0.034 (0.007)	3.6x10 ⁻⁰⁷	0.019 (0.014)	0.1882	0.019 (0.009)	0.040
rs10799445	А	С	0.028 (0.005)	1.0×10^{-07}	0.023 (0.014)	9.9x10 ⁻⁰²	0.037 (0.006)	7.8x10 ⁻⁰⁹	-0.018 (0.009)	0.043
rs822552	G	С	0.037 (0.006)	8.1×10^{-11}	0.043 (0.006)	1.6×10^{-11}	0.034 (0.013)	9.8x10 ⁻⁰³	0.017 (0.008)	0.044

Supplementary Table 6. Nominally significant (P<0.001) gene x gene interaction results for all pairwise tests between the lead SNPs at 207 loci with P<5x10⁻⁶ in Stage 1. The betas refer to the height increasing alleles from Stage 1. The additive effect results for each individual SNP is based on the Stage 1 meta-analysis. The results for the pairwise interaction analysis are based on a subset of 103,034 individuals from Stage 1.

Markers	Additive effect SNP1	Additive effect SNP1 P	Additive effect SNP2	Additive effect SNP2 P	Pairwise interaction	Interaction P
(SNP1/SNP2)					beta (SE)	
rs2145998 rs6470764	0.025	2.7x10 ⁻⁰⁸	0.047	5.9x10 ⁻¹⁷	0.036 (0.008)	7.7x10 ⁻⁰⁶
rs1741344 rs4800452	0.026	3.5x10 ⁻⁰⁸	0.048	2.4x10 ⁻¹⁷	-0.035 (0.009)	3.8x10 ⁻⁰⁵
rs7853377 rs955748	0.026	3.1x10 ⁻⁰⁶	0.024	2.2x10 ⁻⁰⁶	0.035 (0.009)	6.1x10 ⁻⁰⁵
rs494459 rs6470764	0.021	4.9x10 ⁻⁰⁶	0.047	5.9x10 ⁻¹⁷	-0.032 (0.008)	0.000104
rs3110496 rs7759938	0.023	1.6x10 ⁻⁰⁶	0.042	8.7x10 ⁻¹⁸	-0.028 (0.007)	0.000146
rs1814175 rs9428104	0.023	2.6x10 ⁻⁰⁶	0.038	8.9x10 ⁻¹³	-0.030 (0.008)	0.000163
rs3110496 rs7697556	0.023	1.6x10 ⁻⁰⁶	0.022	1.3x10 ⁻⁰⁶	0.025 (0.007)	0.000218
rs143384 rs17346452	0.064	4.9x10 ⁻³⁹	0.038	3.3x10 ⁻¹⁴	-0.028 (0.008)	0.000231
rs1351164 rs6684205	0.028	3.7x10 ⁻⁰⁷	0.033	2.0x10 ⁻¹¹	-0.031 (0.009)	0.000356
rs1013209 rs16942341	0.029	4.5×10^{-08}	0.134	1.3×10^{-17}	0.095 (0.027)	0.000357
rs16942341 rs5017948	0.134	1.3×10^{-17}	0.027	4.7x10 ⁻⁰⁶	0.107 (0.030)	0.00042
rs2408058 rs6879260	0.035	2.2×10^{-08}	0.028	5.6x10 ⁻¹⁰	-0.031 (0.009)	0.000507
rs806794 rs9428104	0.053	5.5x10 ⁻²⁶	0.038	8.9x10 ⁻¹³	-0.029 (0.008)	0.000535
rs16892729 rs2154319	0.025	1.3x10 ⁻⁰⁶	0.034	4.3x10 ⁻¹⁰	-0.031 (0.009)	0.000591
rs17081935 rs2110001	0.031	4.8×10^{-08}	0.033	9.8x10 ⁻¹⁰	0.032 (0.009)	0.00062
rs4640244 rs9428104	0.028	2.0×10^{-07}	0.038	8.9x10 ⁻¹³	-0.030 (0.009)	0.000658
rs1173727 rs2580816	0.036	4.0x10 ⁻¹⁵	0.041	1.8×10^{-12}	0.029 (0.009)	0.000713
rs1046934 rs17017854	0.046	6.4x10 ⁻²²	0.028	4.0x10 ⁻⁰⁶	0.030 (0.009)	0.000817
rs2154319 rs6772112	0.034	4.3x10 ⁻¹⁰	0.046	1.6×10^{-06}	0.054 (0.016)	0.00088
rs3791675 rs6684205	0.050	2.4×10^{-20}	0.033	2.0x10 ⁻¹¹	0.028 (0.008)	0.000935
rs3791675 rs7759938	0.050	2.4×10^{-20}	0.042	8.7x10 ⁻¹⁸	0.027 (0.008)	0.000972

Supplementary Table 7. Significant associations between height SNPs and cis gene expression (cis-eQTLs) in five different tissues.	

Height SNP	Chr	Position	Nearby Gene	Height increasing allele	Tissue	Gene	Effect ^a	Р	P _{adj} ^b	Peak SNP ^c	r ^{2 d}	Ρ	P _{adj} ^e	High correlatio n (r ² >0.8) with Peak SNP
Lymphocyte														
rs1043515	17	34175722	PIP4K2B	G	Lymphocyte	CCDC49	-	2.43E-09	0.77	rs11653487	0.66	1.70E-12	0.07	
					Lymphocyte	PSMB3	-	5.17E-06	0.03	rs8071479	0.21	2.14E-06	0.01	
					Lymphocyte	RPL23	-	4.79E-06	0.16	rs1239177	0.18	5.26E-15	2.89E-10	
rs1046943	6	109890634	ZBTB24	А	Lymphocyte	AKD1	+	9.91E-09	NA	rs10872046	NA	2.34E-10	NA	
					Lymphocyte	MICAL1	+	2.18E-06	0.42	rs6916579	0.63	4.20E-13	1.56E-04	
					Lymphocyte	ZBTB24	+	4.27E-13	0.93	rs3799842	0.90	6.47E-14	0.53	YES
rs10799445	1	225978506	JMJD4	А	Lymphocyte	ZNF678	-	1.41E-19	0.42	rs6426470	0.74	2.51E-25	0.03	
rs10863936	1	210304421	DTL	G	Lymphocyte	INTS7	-	1.91E-33	1.00	rs10863936	1.00	1.91E-33	1.00	YES
rs11599750	10	101795432	CPN1	С	Lymphocyte	DNMBP	+	2.97E-05	0.22	rs4148397	0.08	1.81E-15	7.47E-11	
rs11648796	16	732191	NARFL	G	Lymphocyte	FAM173A	+	9.45E-07	0.99	rs1406814	0.88	1.95E-07	0.52	YES
					Lymphocyte	METRN	+	3.08E-11	0.83	rs3169403	0.79	2.34E-12	0.35	
rs11830103	12	122389499	SBNO1	G	Lymphocyte	ARL6IP4	-	1.06E-11	0.55	rs11057276	0.46	1.84E-14	0.02	
					Lymphocyte	CDK2AP1	-	2.90E-17	0.93	rs1060105	0.89	2.44E-20	0.09	YES
					Lymphocyte	MPHOSPH9	-	2.44E-14	0.75	rs883263	0.74	1.54E-16	0.13	
					Lymphocyte	SBNO1	-	2.06E-11	0.12	rs10773000	0.32	2.57E-12	0.05	
					Lymphocyte	SETD8	-	2.02E-07	0.44	rs1727295	0.50	2.67E-08	0.15	
rs11958779	5	55037656	SLC38A9	G	Lymphocyte	SLC38A9	+	8.41E-13	0.95	rs4865615	0.79	6.51E-15	0.19	
rs12474201	2	46774789	SOCS5	А	Lymphocyte	CRIPT	+	1.20E-05	0.56	rs3087822	0.01	1.55E-22	1.30E-16	
rs12534093	7	23469499	IGF2BP3	Т	Lymphocyte	CCDC126	-	3.49E-06	0.25	rs13227748	0.16	8.41E-36	1.76E-31	
					Lymphocyte	TRA2A	-	1.33E-05	0.02	rs4722238	0.10	3.48E-16	6.44E-13	
rs12694997	2	241911659	SEPT2	G	Lymphocyte	FARP2	-	6.12E-08	0.02	rs3755325	0.22	5.23E-10	4.22E-04	
					Lymphocyte	SEPT2	+	1.41E-20	0.96	rs11679955	0.96	1.14E-20	0.93	YES
rs1330	11	17272605	NUCB2	Т	Lymphocyte	NUCB2	-	5.31E-08	0.75	rs214097	0.39	2.44E-19	5.86E-10	
rs143384	20	33489170	GDF5	G	Lymphocyte	CPNE1	-	9.60E-08	0.40	rs6060535	0.13	5.59E-38	1.52E-30	
					Lymphocyte	RBM39	+	3.43E-06	0.37	rs1204656	0.54	1.30E-06	0.22	
					Lymphocyte	UQCC	-	8.33E-08	0.89	rs6060402	0.74	1.44E-08	0.51	
rs1582931	5	122685098	CEP120	G	Lymphocyte	CCDC100	+	3.15E-06	4.43E-05	rs1465291	0.00	5.31E-07	6.48E-06	
					Lymphocyte	CSNK1G3	+	1.28E-05	NA	rs11743543	NA	1.00E-12	NA	
rs1708299	7	28156471	JAZF1	А	Lymphocyte	JAZF1	+	1.11E-06	0.28	rs1635853	0.69	2.45E-08	0.01	
rs17318596	19	46628935	ATP5SL	А	Lymphocyte	ATP5SL	-	3.98E-05	NA	rs12495167	NA	2.30E-06	NA	
rs17346452	1	170319910	DNM3	С	Lymphocyte	DNM3	-	3.21E-07	0.93	rs17277008	0.83	7.98E-08	0.47	YES
rs17780086	17	27367395	LRRC37B	А	Lymphocyte	C17orf79	-	1.81E-08	0.52	rs2074101	0.66	6.70E-11	0.02	
rs2066807	12	55026949	STAT2	G	Lymphocyte	SPRYD4	+	1.38E-06	0.87	rs2657880	0.08	1.15E-29	4.17E-22	
					Lymphocyte	TMEM4	-	1.37E-20	0.98	rs1274493	1.00	7.44E-23	0.13	YES

rs2072153	17	44745013	ZNF652	С	Lymphocyte	243495_s_at	+	5.64E-07	0.90	rs11657381	0.09	4.31E-36	2.67E-29	
					Lymphocyte	ZNF652	+	1.72E-05	NA	rs12273855	NA	2.44E-07	NA	
rs2247341	4	1671115	SLBP/FGFR3	А	Lymphocyte	FAM53A	-	3.40E-06	0.09	rs744658	0.09	6.72E-18	1.39E-13	
					Lymphocyte	SLBP	-	5.01E-06	0.98	rs1530588	1.00	3.48E-06	0.87	YES
rs2256183	6	31488508	MICA	А	Lymphocyte	1557242_at	+	2.35E-07	0.12	rs2844521	0.40	6.72E-24	7.31E-12	
					Lymphocyte	HLA-B	+	2.06E-05	0.05	rs3871248	0.12	1.00E-17	2.40E-13	
					Lymphocyte	HLA-C	+	4.39E-05	4.77E-07	rs9263875	0.01	6.09E-26	5.04E-27	
					Lymphocyte	LOC285835	+	8.89E-12	0.95	rs2428486	0.40	1.10E-27	6.00E-13	
rs2336725	3	53093779	RTF1	С	Lymphocyte	RFT1	+	7.81E-13	0.88	rs2163167	0.78	3.41E-14	0.37	
					Lymphocyte	SFMBT1	-	9.13E-07	0.79	rs2336723	0.79	7.22E-07	0.74	
rs237743	20	47336426	ZNFX1	А	Lymphocyte	ARFGEF2	+	4.22E-12	0.96	rs730544	0.43	4.59E-30	4.64E-16	
					Lymphocyte	C20orf199	-	2.12E-16	1.00	rs237743	1.00	2.12E-16	1.00	YES
rs2638953	12	28425682	CCDC91	С	Lymphocyte	CCDC91	+	8.99E-10	0.79	rs7307078	0.76	1.15E-12	0.06	
rs2665838	17	59320197	CSH1/GH1	G	Lymphocyte	FTSJ3	+	3.83E-15	0.005	rs2727276	0.28	2.47E-33	1.98E-20	
					Lymphocyte	PSMC5	+	1.16E-05	NA	rs1405489	NA	1.26E-06	NA	
rs3110496	17	24941897	ANKRD13B	G	Lymphocyte	ABHD15	-	6.10E-05	NA	rs12892137	NA	3.36E-06	NA	
rs3764419	17	26188149	ATAD5	С	Lymphocyte	235803_at	-	4.79E-15	0.38	rs1808255	0.51	8.56E-22	4.46E-05	
			/RNF135											
					Lymphocyte	C17orf42	-	1.39E-12	0.78	rs3760318	0.90	2.81E-14	0.35	YES
					Lymphocyte	SUZ12P	-	1.76E-05	0.31	rs11652289	0.13	8.90E-29	2.40E-26	
rs42235	7	92086012	CDK6	Т	Lymphocyte	CDK6	-	4.39E-20	1.00	rs42235	1.00	4.39E-20	1.00	YES
rs4601530	1	24916698	CLIC4	С	Lymphocyte	CLIC4	+	5.00E-05	NA	rs13412931	NA	9.06E-08	NA	
rs4605213	17	46599746	NME2	С	Lymphocyte	NME1-NME2	-	1.44E-14	0.24	rs8069453	0.49	3.38E-25	4.73E-09	
rs4665736	2	25041103	DNAJC27	Т	Lymphocyte	ADCY3	+	3.66E-17	0.88	rs6737082	0.61	1.79E-21	1.13E-14	
rs494459	11	118079885	TREH	Т	Lymphocyte	DDX6	+	4.01E-09	0.99	rs603486	0.35	5.12E-18	1.17E-17	
rs4986172	17	40571807	ACBD4	С	Lymphocyte	NMT1	-	8.13E-07	0.21	rs2301597	0.32	6.70E-10	9.38E-04	
rs6439167	3	130533446	C3orf47	С	Lymphocyte	H1FX	+	3.27E-10	0.78	rs6765930	0.94	1.27E-11	0.44	YES
rs6449353	4	17642586	LCORL	Т	Lymphocyte	DCAF16	+	1.12E-06	NA	rs2287291	NA	1.32E-08	NA	
rs6457620	6	32771977	HLA locus	G	Lymphocyte	HLA-DQB1	-	2.38E-14	0.72	rs5000634	0.64	6.63E-18	0.02	
rs6699417	1	88896031	PKN2	Т	Lymphocyte	CCBL2	+	5.38E-19	0.77	rs10801690	0.46	6.97E-35	7.92E-12	
					Lymphocyte	КАТЗ	-	9.68E-17	0.31	rs10801690	0.46	1.36E-26	1.00E-08	
rs7178424	15	60167551	C2CD4A	С	Lymphocyte	VPS13C	+	2.40E-06	0.003	rs17303915	0.05	1.77E-16	2.47E-13	
rs7332115	13	32045548	PDS5B	G	Lymphocyte	PDS5B	-	9.88E-29	6.60E-06	rs2051570	0.33	4.52E-41	8.37E-18	
			/BRCA2		Lymphocyte	PFAAP5	+	3.75E-39	0.85	rs9315167	0.93	1.18E-42	0.05	YES
rs798489	7	2768329	GNA12	С	Lymphocyte	C9orf47	-	2.69E-09	0.04	rs4719646	0.44	2.56E-10	0.007	
					Lymphocyte	GNA12	-	2.99E-27	0.76	rs1636264	0.88	3.55E-31	0.06	YES
rs9360921	6	76322362	SENP6	G	Lymphocyte	SENP6	+	4.43E-05	0.64	rs7385	0.40	1.23E-13	2.04E-07	
rs9472414	6	45054484	SUPT3H	Т	Lymphocyte	SUPT3H	-	6.58E-06	0.19	rs1329716	0.17	2.25E-13	5.57E-08	
			/RUNX2											
rs9835332	3	56642722	C3orf63	G	Lymphocyte	ARHGEF3	+	5.93E-08	0.82	rs2317247	0.29	2.24E-17	1.83E-08	
					Lymphocyte	CCDC66	-	1.34E-05	0.11	rs17216685	0.19	2.58E-08	7.56E-04	
					Lymphocyte	RAP140	+	4.19E-05	NA	rs213011	NA	4.07E-07	NA	

rs9863706	3	72520103	RYBP	С	Lymphocyte	RYBP	-	1.27E-05	0.16	rs753319	0.38	7.09E-18	6.67E-09	
rs9967417	18	45213498	DYM	G	Lymphocyte	C18orf32	+	7.79E-06	0.73	rs8091253	0.21	9.30E-21	1.39E-14	
rs9969804	9	94468941	ІРРК	А	Lymphocyte	BICD2	-	1.04E-06	0.06	rs12685791	0.10	4.91E-11	9.09E-06	
					Lymphocyte	IARS	+	2.10E-05	0.30	rs10120915	0.45	1.88E-07	0.01	
					Lymphocyte	NOL8	+	4.58E-05	0.31	rs10820956	0.29	2.15E-10	5.51E-06	
Other tissues														
rs10010325	4	106325802	TET2	А	Omentum	PPA2	+	2.80E-06	1.00	rs10010325	1.00	2.80E-06	1.00	YES
rs1043515	17	34175722	PIP4K2B	G	Subcutaneous fat	PIP5K2B	+	1.53E-34	1.00	rs1043515	1.00	1.53E-34	1.00	YES
					Omentum	ΡΙΡ5Κ2Β	+	1.24E-17	1.00	rs1043515	1.00	1.24E-17	1.00	YES
					Osteoblast	PSMB3	-	5.72E-05	0.92	rs2338115	0.93	4.54E-05	0.77	YES
rs1046934	1	182290152	TSEN15	С	Omentum	TSEN15	+	1.55E-17	1.00	rs1046934	1.00	1.55E-17	1.00	YES
					Subcutaneous fat	TSEN15	+	1.28E-10	1.00	rs1327124	0.99	9.81E-11	0.99	YES
rs1046943	6	109890634	ZBTB24	А	Omentum	AKD1	+	4.75E-08	0.97	rs13201430	0.91	1.46E-08	0.87	YES
					Subcutaneous fat	BC030091	-	1.58E-31	0.99	rs3757235	0.97	4.75E-32	0.94	YES
					Omentum	BC030091	-	5.76E-25	0.94	rs6920372	0.97	2.84E-26	0.80	YES
					Liver	BC030091	-	3.84E-11	1.00	rs1046943	1.00	3.84E-11	1.00	YES
					Omentum	HSS00017874	+	3.36E-06	0.83	rs9480936	0.96	8.96E-07	0.84	YES
					Omentum	PPIL6	-	3.99E-07	0.17	rs17534632	0.71	1.14E-14	0.002	
					Subcutaneous fat	SMPD2	-	4.16E-22	0.27	rs2236582	0.71	3.24E-28	0.006	
					Omentum	SMPD2	-	4.97E-22	0.69	rs12197114	0.71	1.07E-29	0.005	
					Liver	SMPD2	-	5.64E-06	0.83	rs1048203	0.76	2.31E-09	0.13	
					Osteoblast	SMPD2	-	2.05E-05	0.51	rs1322818	0.45	3.84E-07	0.03	
					Omentum	ZBTB24	+	2.22E-11	0.94	rs1074766	0.96	5.17E-12	0.93	YES
					Subcutaneous fat	ZBTB24	+	6.13E-08	0.005	rs6899915	0.21	2.06E-08	0.002	
rs1047014	6	19949472	ID4	С	Omentum	ID4	-	7.98E-12	1.00	rs1047014	1.00	7.98E-12	1.00	YES
rs10799445	1	225978506	JMJD4	А	Osteoblast	JMJD4	-	3.93E-07	0.62	rs6664307	0.96	1.50E-07	0.52	YES
					Liver	SNAP47	+	8.63E-10	1.00	rs10799445	1.00	8.63E-10	1.00	YES
rs10863936	1	210304421	DTL	G	Subcutaneous fat	INTS7	+	1.00E-10	0.73	rs4951561	0.79	1.87E-11	0.59	
					Omentum	INTS7	+	1.65E-10	1.00	rs10863936	1.00	1.65E-10	1.00	YES
rs11107116	12	92502635	SOCS2	Т	Omentum	AL161980	-	2.35E-42	1.00	rs11107116	1.00	2.35E-42	1.00	YES
					Subcutaneous fat	AL161980	-	1.77E-34	1.00	rs11107116	1.00	1.77E-34	1.00	YES
					Osteoblast	MRPL42	+	3.37E-04	0.001	rs10859513	0.001	7.96E-06	3.50E-05	
rs11259936	15	82371586	ADAMTSL3	С	Omentum	DNM1P41	+	3.99E-12	0.41	rs4125566	0.11	1.81E-106	2.88E-82	
					Subcutaneous fat	DNM1P41	+	3.80E-10	0.06	rs4125566	0.08	3.80E-78	1.14E-62	
					Subcutaneous fat	GOLGA6L5	+	3.14E-07	0.004	rs150968	0.08	4.47E-19	6.70E-14	
					Omentum	LOC727849	+	5.15E-06	0.24	rs12906983	0.17	2.24E-19	2.65E-12	

					Subcutaneous fat	LOC90396	-	1.95E-09	0.79	rs11631096	0.16	5.64E-65	8.41E-46	
rs11599750	10	101795432	CPN1	С	Omentum	CWF19L1	-	2.19E-19	1.00	rs11599750	1.00	2.19E-19	1.00	YES
					Subcutaneous fat	CWF19L1	-	2.38E-13	1.00	rs11599750	1.00	2.38E-13	1.00	YES
					Liver	CWF19L1	-	2.19E-09	0.63	rs12784396	0.36	8.48E-31	3.24E-14	
rs11648796	16	732191	NARFL	G	Omentum	HAGHL	+	4.25E-37	1.00	rs11648796	1.00	4.25E-37	1.00	YES
					Subcutaneous fat	HAGHL	+	1.44E-07	1.00	rs11648796	1.00	1.44E-07	1.00	YES
					Osteoblast	HAGHL	+	9.76E-05	0.52	rs763206	0.76	4.59E-05	0.31	
					Omentum	RHBDL1	+	4.53E-06	0.18	rs3752493	0.13	8.69E-20	2.11E-13	
rs11958779	5	55037656	SLC38A9	G	Subcutaneous fat	AL117656	-	3.12E-10	0.86	rs6867834	0.88	5.55E-12	0.54	YES
					Omentum	AL117656	-	2.67E-08	0.52	rs7721054	0.87	1.73E-10	0.31	YES
					Subcutaneous fat	Contig47865	-	1.18E-07	0.006	rs1109967	0.06	2.43E-31	6.25E-25	
					Omentum	PPAP2A	-	1.25E-18	0.87	rs11955759	0.89	1.37E-19	0.73	YES
					Subcutaneous fat	PPAP2A	-	8.81E-08	0.55	rs10940473	0.63	1.98E-08	0.27	
rs12470505	2	219616613	CCDC108 /IHH	Т	Omentum	AL050185	-	6.74E-17	0.14	rs6735637	0.17	5.83E-85	4.97E-56	
					Subcutaneous fat	AL050185	-	8.50E-14	0.44	rs1402508	0.18	9.94E-65	5.31E-41	
					Liver	Contig41005_RC	-	1.90E-06	1.00	rs12470505	1.00	1.90E-06	1.00	YES
					Omentum	SLC23A3	-	3.55E-10	0.98	rs6719931	0.91	2.81E-11	0.77	YES
rs12474201	2	46774789	SOCS5	А	Omentum	ATP6V1E2	-	6.80E-10	0.04	rs4952833	0.08	2.27E-64	1.29E-51	
					Subcutaneous fat	ATP6V1E2	-	2.81E-07	1.00	rs12474201	1.00	2.81E-07	1.00	YES
					Omentum	SOCS5	-	8.85E- 105	0.95	rs11695058	0.89	2.02E-123	0.009	YES
					Subcutaneous fat	SOCS5	-	2.66E-98	1.00	rs12474201	1.00	2.66E-98	1.00	YES
					Liver	SOCS5	-	7.19E-16	0.98	rs4953419	0.90	2.60E-17	0.63	YES
rs12694997	2	241911659	SEPT2	G	Omentum	FARP2	-	2.51E-14	0.75	rs11674695	0.81	1.31E-15	0.44	YES
					Subcutaneous fat	FARP2	-	2.78E-07	0.07	rs3755325	0.26	2.35E-10	4.43E-04	
					Omentum	HSS00174467	-	2.50E-06	1.00	rs12694997	1.00	2.50E-06	1.00	YES
rs143384	20	33489170	GDF5	G	Subcutaneous fat	CEP250	-	3.06E-16	0.67	rs224371	0.61	3.37E-33	9.86E-08	
					Omentum	CEP250	-	4.82E-14	0.33	rs10359	0.61	6.09E-29	7.81E-08	
					Omentum	ERGIC3	-	8.17E-12	0.81	rs224440	0.51	1.87E-17	0.002	
					Subcutaneous fat	ERGIC3	-	7.84E-09	0.94	rs10359	0.62	5.95E-15	0.003	
					Omentum	UQCC	-	1.19E-19	0.98	rs2425060	0.79	3.93E-25	0.04	
					Subcutaneous fat	UQCC	-	2.64E-12	0.92	rs6060371	0.77	1.32E-15	0.02	

					Liver	UQCC	-	1.59E-09	0.47	rs6060371	0.76	5.23E-12	0.005	
					Osteoblast	UQCC	-	4.44E-07	0.96	rs6142358	0.74	4.32E-09	0.08	
rs1490384	6	126892853	C6orf173	Т	Subcutaneous fat	CENPW	+	8.87E-07	0.86	rs1361108	0.78	1.54E-09	0.19	
rs1582931	5	122685098	CEP120	G	Omentum	CCDC100	+	1.71E-06	0.98	rs12520233	0.84	1.21E-07	0.64	YES
rs1738475	1	23409478	HTR1D	С	Omentum	LUZP1	-	3.18E-48	7.84E-07	rs11578046	0.58	3.68E-62	3.19E-09	
					Subcutaneous fat	LUZP1	-	8.19E-38	0.69	rs1208932	0.80	2.51E-42	0.09	YES
					Liver	LUZP1	-	7.08E-12	0.61	rs1208932	0.80	6.81E-14	0.29	YES
rs17780086	17	27367395	LRRC37B	А	Omentum	LRRC37B	-	1.06E-08	1.00	rs9903408	1.00	1.06E-08	1.00	YES
rs1814175	11	49515748	FOLH1	Т	Subcutaneous fat	FOLH1	+	3.74E-08	1.00	rs1814175	1.00	3.74E-08	1.00	YES
rs1950500	14	23900690	NFATC4	Т	Omentum	ADCY4	+	3.98E-08	0.18	rs12436417	0.34	5.65E-15	4.37E-06	
					Subcutaneous fat	DHRS1	+	2.47E-06	0.59	rs7146665	0.16	2.50E-31	9.75E-22	
rs2066807	12	55026949	STAT2	G	Liver	STAT2	+	1.52E-11	0.89	rs2291361	0.88	1.35E-11	0.88	YES
					Subcutaneous fat	STAT2	-	4.12E-10	1.00	rs2066807	1.00	4.12E-10	1.00	YES
					Omentum	STAT2	-	6.56E-08	1.00	rs2066807	1.00	6.56E-08	1.00	YES
					Osteoblast	USP52	+	3.99E-04	0.91	rs2066819	1.00	1.88E-04	0.57	YES
rs2072153	17	44745013	ZNF652	С	Omentum	ZNF652	-	1.00E-28	0.58	rs8064621	0.65	4.82E-39	2.10E-04	
					Subcutaneous fat	ZNF652	-	7.54E-20	0.12	rs8064621	0.63	1.69E-33	8.54E-07	
rs2079795	17	56851431	TBX2	Т	Subcutaneous	C17orf82	-	6.14E-08	0.91	rs740755	0.86	2.70E-08	0.61	YES
					fat Subcutaneous fat	Contig40232_RC	+	1.91E-08	1.00	rs9892365	1.00	1.91E-08	1.00	YES
					Liver	Contig40232_RC	+	2.14E-06	0.91	rs2240736	0.58	2.51E-10	0.02	
rs2110001	7	150147955	TMEM176A	G	Liver	ABP1	-	8.45E-45	0.58	rs10452848	0.37	9.93E-211	7.06E-84	
					Omentum	ABP1	+	1.44E-36	2.01E-09	rs17173637	0.24	2.49E-54	1.73E-22	
					Subcutaneous fat	ABP1	+	1.67E-10	0.002	rs17173637	0.19	2.24E-13	9.61E-06	
					Subcutaneous fat	TMEM176A	+	1.68E-06	0.93	rs13223879	0.48	9.90E-13	2.90E-04	
rs2145998	10	80791702	PPIF	Т	Liver	PPIF	+	1.87E-11	6.93E-05	rs10824743	0.08	6.25E-23	3.06E-15	
rs2247341	4	1671115	SLBP /FGFR3	А	Liver	TACC3	-	1.85E-07	0.07	rs17802841	0.13	2.74E-21	7.66E-14	
rs2256183	6	31488508	MICA	А	Omentum	ATP6V1G2	+	7.75E-07	0.39	rs2239705	0.06	3.88E-89	1.99E-77	
					Omentum	Contig31905_RC	-	1.98E-62	0.13	rs2523467	0.48	6.21E-160	1.06E-48	
					Liver	Contig31905_RC	-	2.26E-53	0.06	rs9348866	0.50	1.03E-112	1.41E-31	
					Subcutaneous fat	Contig31905_RC	-	2.31E-38	0.36	rs2428486	0.46	5.44E-117	1.42E-42	
					Subcutaneous fat	CREBL1	+	6.24E-08	0.05	rs1058026	0.20	2.58E-14	3.50E-07	
					Omentum	D83543	-	4.26E-24	5.35E-04	rs3869132	0.27	1.66E-41	3.48E-16	
					Liver	D83543	-	8.24E-21	0.93	rs2844513	0.67	1.58E-34	4.02E-05	
					Subcutaneous fat	D83543	-	1.49E-11	0.20	rs3869132	0.25	1.01E-31	3.70E-16	
-----------	----	-----------	----------	---	---------------------	----------------	---	----------	----------	-----------	------	-----------	-----------	-----
					Omentum	hCT1834354.1	-	2.47E-61	1.06E-27	rs9295986	0.19	2.46E-63	1.14E-29	
					Subcutaneous fat	hCT1834354.1	-	5.81E-51	8.15E-26	rs9295986	0.16	3.21E-51	1.49E-26	
					Liver	hCT1834354.1	-	1.17E-33	6.12E-13	rs9295986	0.19	4.58E-38	2.21E-16	
					Liver	HLA-B	+	1.30E-07	1.00	rs2256183	1.00	1.30E-07	1.00	YES
					Omentum	HLA-B	+	2.60E-07	0.04	rs1058026	0.19	2.31E-17	5.28E-10	
					Omentum	HLA-DRB5	-	3.75E-06	0.29	rs3135391	0.07	5.00E-217	6.80E-188	
rs2279008	19	17144303	МҮО9В	Т	Omentum	OCEL1	-	3.08E-06	4.57E-05	rs7258100	0.02	2.56E-08	4.29E-07	
rs2284746	1	17179262	MFAP2	G	Omentum	MFAP2	+	3.81E-33	1.00	rs2284746	1.00	3.81E-33	1.00	YES
					Osteoblast	MFAP2	+	1.01E-06	0.04	rs9435732	0.30	5.56E-09	0.001	
					Liver	MSTP9	-	4.63E-11	1.00	rs2284746	1.00	4.63E-11	1.00	YES
					Omentum	MSTP9	-	6.98E-11	0.16	rs6691985	0.43	1.09E-13	0.004	
					Subcutaneous fat	MSTP9	-	8.28E-10	0.78	rs7513616	0.69	8.93E-12	0.21	
rs2336725	3	53093779	RTF1	С	Omentum	Contig33975_RC	+	1.47E-06	0.05	rs1134546	0.11	8.80E-15	4.09E-09	
rs237743	20	47336426	ZNFX1	A	Subcutaneous fat	ARFGEF2	+	3.69E-12	0.008	rs1569750	0.09	3.16E-17	2.41E-07	
					Subcutaneous fat	DDX27	-	5.22E-06	1.00	rs237743	1.00	5.22E-06	1.00	YES
rs2597513	3	13530836	HDAC11	С	Omentum	FBLN2	-	2.27E-06	1.00	rs2597513	1.00	2.27E-06	1.00	YES
rs2638953	12	28425682	CCDC91	С	Subcutaneous fat	AK092571	-	2.00E-16	1.00	rs2638953	1.00	2.00E-16	1.00	YES
					Omentum	AK092571	-	4.21E-07	0.13	rs7978086	0.23	3.73E-12	1.75E-05	
rs2665838	17	59320197	CSH1/GH1	G	Omentum	FTSJ3	+	1.54E-34	0.57	rs1043127	0.63	1.50E-91	2.81E-37	
					Subcutaneous fat	FTSJ3	+	3.08E-20	0.28	rs1043127	0.62	4.31E-55	1.96E-22	
					Liver	FTSJ3	+	5.75E-15	0.27	rs2584608	0.66	1.01E-44	2.45E-21	
					Osteoblast	FTSJ3	+	1.08E-04	0.02	rs2665797	0.28	2.24E-09	9.52E-07	
					Omentum	PSMC5	+	1.75E-14	0.15	rs2727331	0.44	2.37E-21	8.12E-06	
					Subcutaneous fat	PSMC5	+	2.06E-08	0.33	rs721575	0.56	1.70E-13	7.00E-06	
					Subcutaneous fat	TCAM1	-	4.12E-11	0.65	rs6504179	0.62	1.27E-19	1.48E-07	
					Omentum	TCAM1	-	3.98E-06	0.77	rs3760252	0.63	5.23E-12	3.56E-06	
rs26868	16	2189377	CASKIN1	А	Omentum	C16orf79	-	2.16E-07	0.36	rs1126	0.52	6.27E-09	0.09	
					Omentum	MLST8	+	7.66E-11	0.31	rs26862	0.62	8.75E-16	0.006	
rs274546	5	131727766	SLC22A5	G	Subcutaneous fat	PDLIM4	-	3.04E-10	0.71	rs162890	0.40	1.47E-20	3.81E-07	
					Omentum	PDLIM4	-	8.25E-07	0.82	rs7727038	0.68	1.23E-09	0.11	
					Omentum	SLC22A4	-	1.30E-20	0.73	rs273901	0.74	9.99E-24	0.12	
					Liver	SLC22A4	-	8.56E-09	1.00	rs274546	1.00	8.56E-09	1.00	YES
					Subcutaneous fat	SLC22A4	-	5.08E-06	0.96	rs272886	0.98	1.85E-06	0.95	YES

rs2856321	12	11747040	ETV6	G	Omentum	AK025217	+	1.16E-06	0.31	rs2856327	0.19	4.57E-36	1.19E-24	
					Omentum	Contig21370_RC	-	1.20E-09	0.86	rs10845408	0.92	2.16E-10	0.77	YES
rs3110496	17	24941897	ANKRD13B	G	Subcutaneous fat	ANKRD13B	-	2.26E-09	1.00	rs3110496	1.00	2.26E-09	1.00	YES
					Omentum	TP53I13	+	1.36E-12	1.00	rs3110496	1.00	1.36E-12	1.00	YES
					Subcutaneous	TP53I13	+	3.30E-06	1.00	rs3110496	1.00	3.30E-06	1.00	YES
					fat									
rs3129109	6	29192211	OR2J3	С	Liver	hCT2282382	+	3.73E-06	1.33E-04	rs2844827	0.02	4.38E-38	6.34E-36	
					Subcutaneous fat	HSS00128987	-	1.37E-28	0.41	rs1476016	0.59	1.18E-47	1.12E-08	
					Omentum	HSS00128987	-	5.35E-24	0.76	rs1476016	0.61	5.36E-43	5.81E-08	
					Omentum	PGBD1	-	1.44E-06	0.32	rs6917759	0.11	1.17E-33	3.02E-25	
					Subcutaneous fat	PGBD1	-	2.94E-06	0.59	rs16893937	0.13	1.21E-33	2.23E-24	
					Omentum	ZNF323	-	4.67E-11	0.18	rs853684	0.14	7.58E-54	3.16E-37	
					Subcutaneous fat	ZNF323	-	3.66E-06	0.61	rs213238	0.10	1.66E-55	6.84E-45	
rs3764419	17	26188149	ATAD5 /RNF135	С	Omentum	C17orf42	+	3.62E-40	1.00	rs3764419	1.00	3.62E-40	1.00	YES
			·		Subcutaneous fat	C17orf42	+	1.66E-32	1.00	rs9898858	0.99	7.28E-33	0.99	YES
					Liver	C17orf42	+	3.81E-13	1.00	rs3764419	1.00	3.81E-13	1.00	YES
					Omentum	SUZ12P	+	1.09E-70	0.98	rs1061342	0.75	6.70E-98	5.67E-07	
					Subcutaneous fat	SUZ12P	+	2.36E-52	0.34	rs1061342	0.77	1.86E-67	4.17E-05	
					Liver	SUZ12P	+	4.52E-11	0.64	rs7503542	0.75	5.40E-18	0.01	
					Liver	UTP6	-	6.53E-09	1.00	rs3764419	1.00	6.53E-09	1.00	YES
rs3782089	11	65093395	SSSCA1	С	Omentum	NEAT1	-	5.83E-08	0.29	rs4244811	0.19	3.84E-26	8.75E-16	
rs42235	7	92086012	CDK6	Т	Omentum	CDK6	+	1.73E-23	0.08	rs17688839	0.50	2.53E-31	1.02E-05	
					Subcutaneous	CDK6	+	3.06E-11	0.46	rs42039	0.70	2.02E-12	0.22	
					fat									
					Liver	CDK6	+	2.21E-06	0.67	rs42039	0.71	1.28E-09	0.04	
rs425277	1	2059032	PRKCZ	Т	Omentum	C1orf86	+	4.65E-39	0.22	rs12082939	0.76	9.34E-60	1.61E-06	
					Liver	C1orf86	+	1.47E-26	0.28	rs262672	0.76	3.81E-32	0.04	
					Subcutaneous fat	C1orf86	+	2.72E-25	0.49	rs2257182	0.78	1.32E-39	1.55E-05	
					Omentum	FLJ10346	+	1.20E-08	0.99	rs427811	0.76	2.38E-11	0.22	
rs494459	11	118079885	TREH	Т	Omentum	AK021715	+	3.84E-39	3.77E-04	rs603486	0.45	7.25E-48	5.13E-09	
					Subcutaneous fat	AK021715	+	2.32E-13	5.03E-08	rs492471	0.05	4.05E-22	2.72E-16	
					Liver	AK021715	+	1.39E-10	0.003	rs4499035	0.19	6.01E-15	1.19E-06	
					Subcutaneous fat	PHLDB1	+	6.42E-08	0.69	rs488141	0.71	8.92E-11	0.10	
					Omentum	PHLDB1	+	1.17E-06	0.93	rs638805	0.63	9.57E-11	0.03	
					Liver	TREH	+	8.72E-30	5.94E-11	rs11216943	0.16	1.87E-59	2.08E-35	
rs5742915	15	72123686	PML	С	Omentum	PML	-	2.52E-23	1.00	rs5742915	1.00	2.52E-23	1.00	YES

					Subcutaneous fat	PML	-	9.87E-13	1.00	rs5742915	1.00	9.87E-13	1.00	YES
rs6439167	3	130533446	C3orf47	С	Omentum	COPG	-	3.88E-06	0.54	rs7636293	0.51	1.30E-08	0.04	
rs6449353	4	17642586	LCORL	Т	Omentum	LCORL	+	1.23E-06	0.002	rs2286534	0.07	1.06E-10	2.97E-07	
rs6457620	6	32771977	HLA locus	G	Omentum	HLA-DQA1	+	1.04E-11	0.48	rs9272346	0.09	3.13E-186	7.13E-151	
					Subcutaneous fat	HLA-DQA1	+	8.15E-11	0.36	rs9272346	0.09	1.78E-159	5.56E-129	
					Liver	HLA-DQA1	+	9.62E-11	0.06	rs9272346	0.09	1.50E-94	3.25E-76	
					Omentum	HLA-DQA2	-	1.97E-15	0.98	rs660895	0.23	1.49E-81	3.80E-49	
					Subcutaneous fat	HLA-DQA2	-	1.20E-10	0.34	rs660895	0.23	5.86E-75	8.50E-48	
					Subcutaneous fat	HLA-DQB1	-	5.15E-34	0.009	rs9272775	0.57	3.91E-36	5.84E-04	
					Omentum	HLA-DQB1	-	6.12E-34	0.004	rs9272775	0.56	3.95E-34	0.003	
					Liver	HLA-DQB1	-	1.04E-06	0.64	rs3891175	0.32	6.80E-29	1.28E-16	
					Omentum	HLA-DRB1	-	3.30E-15	0.45	rs4530903	0.14	4.01E-103	6.40E-72	
					Subcutaneous fat	HLA-DRB1	-	5.73E-12	0.41	rs4530903	0.15	4.67E-79	1.87E-55	
					Liver	HLA-DRB1	-	1.28E-08	0.79	rs4530903	0.14	3.13E-61	9.12E-45	
					Omentum	HLA-DRB5	+	8.73E-19	0.06	rs3135391	0.16	5.00E-217	4.31E-149	
					Subcutaneous fat	HLA-DRB5	+	9.00E-15	0.58	rs3135391	0.14	6.73E-195	3.25E-136	
					Liver	HLA-DRB5	+	1.73E-09	0.006	rs3135391	0.15	3.77E-154	2.33E-111	
rs6684205	1	216676325	TGFB2	G	Omentum	Contig43791_RC	-	3.36E-22	0.99	rs1418556	0.95	1.22E-23	0.32	YES
rs7155279	14	91555634	TRIP11	G	Omentum	AK021920	+	2.84E-06	0.49	rs17734627	0.07	3.68E-73	6.10E-62	
					Liver	BC033643	-	7.33E-09	0.24	rs7149561	0.51	5.53E-22	2.17E-07	
					Subcutaneous fat	BC033643	-	3.51E-06	0.08	rs2235978	0.52	5.53E-19	1.42E-07	
					Omentum	MTAC2D1	-	1.52E-06	4.19E-04	rs11625233	0.02	7.57E-70	7.40E-66	
rs7332115	13	32045548	PDS5B /BRCA2	G	Omentum	N4BP2L2	+	5.51E- 107	0.96	rs1123462	0.94	1.95E-115	0.29	YES
					Subcutaneous fat	N4BP2L2	+	1.42E-84	1.00	rs11840502	0.99	2.31E-85	0.97	YES
					Liver	N4BP2L2	+	9.40E-31	0.99	rs9315167	0.85	1.85E-37	0.10	YES
					Osteoblast	PFAAP5	+	2.39E-17	1.00	rs9595908	1.00	2.38E-17	1.00	YES
rs7849585	9	138251691	QSOX2	Т	Omentum	QSCN6L1	+	9.99E-15	1.00	rs7849585	1.00	9.99E-15	1.00	YES
					Subcutaneous fat	QSCN6L1	+	3.97E-14	0.92	rs12338076	0.93	1.45E-15	0.46	YES
rs798489	7	2768329	GNA12	С	Omentum	CN265316	+	7.18E-28	0.44	rs1713920	0.51	8.85E-73	2.86E-21	
					Subcutaneous fat	CN265316	+	2.26E-15	0.10	rs1713920	0.49	5.41E-49	1.31E-17	
					Liver	CN265316	+	2.40E-12	0.54	rs2527687	0.59	2.55E-20	3.91E-04	
rs806794	6	26308656	Histone cluster	А	Liver	HIST1H2BD	+	3.03E-06	0.48	rs9379829	0.69	1.84E-07	0.24	
					Omentum	HIST1H4F	-	4.63E-06	0.001	rs198834	0.06	2.83E-08	1.13E-05	

rs9360921	6	76322362	SENP6	G	Subcutaneous fat	HSS00085450	-	1.02E-12	1.00	rs9360921	1.00	1.02E-12	1.00	YES
					Osteoblast	SENP6	+	3.93E-04	0.24	rs3969287	0.40	3.50E-04	0.21	
rs9835332	3	56642722	C3orf63	G	Subcutaneous fat	C3orf63	+	4.20E-07	1.00	rs6445814	0.99	1.95E-07	0.98	YES
					Osteoblast	CCDC66	-	1.93E-07	0.85	rs7637449	0.93	1.96E-08	0.47	YES
rs9863706	3	72520103	RYBP	С	Omentum	RYBP	-	1.13E-07	1.00	rs9863706	1.00	1.13E-07	1.00	YES
rs9969804	9	94468941	ІРРК	А	Omentum	ANKRD19	-	9.01E-11	0.94	rs9775485	0.12	1.11E-118	1.39E-90	
					Subcutaneous fat	ANKRD19	-	4.98E-07	0.93	rs10821027	0.09	1.08E-83	9.83E-68	
					Osteoblast	BICD2	+	2.80E-04	0.89	rs7863890	0.22	2.51E-14	1.47E-10	
					Omentum	CENPP	+	1.32E-44	0.004	rs10820995	0.44	4.06E-88	1.32E-29	
					Subcutaneous fat	CENPP	+	4.83E-30	0.16	rs10820995	0.41	8.06E-67	1.25E-23	
					Liver	CENPP	+	1.68E-28	0.05	rs10992265	0.39	1.79E-57	9.93E-21	

^a Direction of effect of the height increasing allele ^b P-value of the height SNP after conditioning on the peak SNP associated with the transcript ^c SNP with the strongest association with the transcript in the region

^d Correlation between the height SNP and peak SNP associated with the transcript ^e P-value of the peak SNP after conditioning on the height SNP

Supplementary Table 8. Height SNPs in linkage disequilibrium ($r^2 \ge 0.8$) with non-synonymous SNPs, using the Hapl phase II CEU data. For each gene, we annotated all reported isoforms.

		CLANT	Non-				
Chr	Position	height SNP	synonymous SNP	r²	Amino acid change	Gene name	Gene isoforn
1	148173037	rs11205277	rs11205303	0.889741	ATG (Met) => GTG (Val) [exon6]	MTMR11	NM_00114586
1	148173037	rs11205277	rs11205303	0.889741	ATG (Met) => GTG (Val) [exon5]	MTMR11	NM_181873
1	182287568	rs1046934	rs2274432	1	GGC (Gly) => GAC (Asp) [exon1]	TSEN15	NM_052965
1	182287568	rs1046934	rs2274432	1	GGC (Gly) => GAC (Asp) [exon1]	TSEN15	NM_00112739
1	182290152	rs1046934	rs1046934	1	CAA (Gln) => CAC (His) [exon2]	TSEN15	NM_052965
1	182290152	rs1046934	rs1046934	1	CAA (Gln) => CAC (His) [exon2]	TSEN15	NM_00112739
2	88656006	rs11684404	rs1805165	0.86857	GCT (Ala) => TCT (Ser) [exon13]	EIF2AK3	NM_004836
2	88676238	rs11684404	rs13045	1	CAA (Gln) => CGA (Arg) [exon3]	EIF2AK3	NM_004836
2	88694388	rs11684404	rs867529	0.86857	TCC (Ser) => TGC (Cys) [exon2]	EIF2AK3	NM_004836
2	241841521	rs12694997	rs7578199	0.88044	AAT (Asn) => AGT (Ser) [exon10]	HDLBP	NM_005336
2	241841521	rs12694997	rs7578199	0.88044	AAT (Asn) => AGT (Ser) [exon10]	HDLBP	NM_203346
3	56603071	rs9835332	rs7637449	0.918614	CGA (Arg) => CAA (Gln) [exon10]	CCDC66	NM_00114194
3	56603071	rs9835332	rs7637449	0.918614	CGA (Arg) => CAA (Gln) [exon10]	CCDC66	NM_0010125(
3	56642722	rs9835332	rs9835332	1	ACA (Thr) => AGA (Arg) [exon11]	C3orf63	NM_015224
3	56642722	rs9835332	rs9835332	1	ACA (Thr) => AGA (Arg) [exon18]	C3orf63	NM 00111273
3	56691962	rs9835332	rs958755	1	CAA (Gln) => CCA (Pro) [exon1]	C3orf63	NM 00111273
4	57492171	rs17081935	rs3796529	1	CCA (Pro) => CTA (Leu) [exon4]	REST	NM 005612
5	131690961	rs274546	rs272893	1	ATA (Ile) => ACA (Thr) [exon5]	SLC22A4	NM_003059
5	176450403	rs422421	rs376618	0.868301	CCC (Pro) => CTC (Leu) [exon3]	FGFR4	NM 022963
5	176450403	rs422421	rs376618	0.868301	CCC (Pro) => CTC (Leu) [exon4]	FGFR4	NM_002011
5	176450403	rs422421	rs376618	0.868301	CCC (Pro) => CTC (Leu) [exon4]	FGFR4	NM 213647
6	29071227	rs3129109	rs6456880	0.90559	AAG (Lys) => CAG (Gln) [exon7]	ZNF311	NM 00101087
6	34322300	rs2780226	rs1150781	1	GGG (Gly) => GCG (Ala) [exon5]	C6orf1	NM 178508
6	34322300	rs2780226	rs1150781	1	GGG (Gly) => GCG (Ala) [exon5]	C6orf1	NM 0010087(
6	34322300	rs2780226	rs1150781	1	GGG (Gly) => GCG (Ala) [exon5]	C6orf1	NM 0010087(
6	35531864	rs6457821	rs7761870	1	TCA (Ser) => TTA (Leu) [exon2]	FANCE	NM 021922
6	35873021	rs6457821	rs2766597	1	CTG (Leu) => CCG (Pro) [exon1]	CLPS	NM_001832
6	109871228	rs1046943	rs1476387	0.95582	AGG (Arg) => AGT (Ser) [exon9]	SMPD2	NM_003080
6	109934409	rs1046943	rs2277114	0.871525	GTA (Val) => ATA (IIe) [exon35]	AKD1	NM 00114512
9	85807085	rs7853377	rs1982151	0.844041	AAT (Asn) => AGT (Ser) [exon3]	RMI1	NM 024945
9	94324803	rs9969804	rs10120210	0.930959	CAG (Gln) => CCG (Pro) [exon2]	ECM2	NM 001393
12	28303639	rs2638953	rs11049488	0.905427	GCA (Ala) => ACA (Thr) [exon2]	CCDC91	NM 018318
12	55026949	rs2066807	rs2066807	1	ATG (Met) => ATC (IIe) [exon20]	STAT2	NM 005419
15	60046929	rs7178424	rs3784634	0.80562	AGG (Arg) => AAG (Lvs) [exon 27]	VPS13C	NM 017684
15	60046929	rs7178424	rs3784634	0.80562	AGG (Arg) => AAG (Lvs) [exon29]	VPS13C	NM 020821
15	60046929	rs7178424	rs3784634	0.80562	AGG (Arg) => AAG (Lys) [exon27]	VPS13C	NM 018080
15	60046929	rs7178424	rs3784634	0.80562	AGG (Arg) => AAG (Lys) [exon29]	VPS13C	NM 00101808
15	72123686	rs5742915	rs5742915	1	TTC (Phe) => CTC (Leu) [exon9]	PML	NM 033238
15	82373128	rs11259936	rs4842838	-	GTG(Val) => TTG(Leu)[exon16]	ADAMTSI 3	NM 207517
19	46595060	rs17318596	rs10853751	0.804656	ACG (Thr) => ATG (Met) [exon1]	EXOSC5	NM 020158
19	46624115	rs17318596	rs284662	0 804656	AGC(Ser) => GGC(Glv)[exon3]	B3GNT8	NM 198540
20	47275067	rs237743	rs11908296	0 971236	GGA (Glv) => GTA (Val) [exon6]	2230170	NM 017895
20	47299191	rs237743	rs6512577	1	ATG (Met) => ATA (Ile) [exon14]	ZNFX1	NM 021035
				±			021000

Supplementary Table 9. GIANT height variants associated with other traits and diseases reported in the NHGRI catalog of published GWAS at genome-wide level of significance (P<5x10⁻⁸), based on a 1 megabase maximum distance and linkage disequilibrium (r^2 >0.1) between the SNPs. Highlighted rows are those for which the GIANT height SNP and the NHGRI SNP showed a strong correlation (r^2 >0.8).

GIANT height	Chr	Position	Nearest or OMIM	GWAS SNP from	GIANT height P-value for	Disease/Trait	r ²	D'	Distance (kb)	Height- increasing	Effect relative to height-increasing	Reference
SNP			gene	catalogue	NHGRI SNP		between G	IANT height ar	nd NHGRI SNP	allele	allele	
rs11118346	1	217810342	LYPLAL1	rs2605100	1.42E-03	WHR (women)	0.17	0.69	99.495	А	lower WHR	Lindgren et al., PLoS Genet 2009
rs720390	3	187031377	IGF2BP2	rs4402960	6.30E-01	Type 2 diabetes	0.48	0.86	36.996	Т	higher T2D risk	Saxena et al., Science 2007
				rs4402960	6.30E-01	Type 2 diabetes	0.48	0.86	36.996	т	higher T2D risk	Scott et al., Science 2007
				rs6769511	6.45E-01	Type 2 diabetes	0.48	0.86	18.393	С	higher T2D risk	Unoki et al., Nat Genet 2008
				rs4402960	6.30E-01	Type 2 diabetes	0.48	0.86	36.996	т	higher T2D risk	Zeggini et al., Science 2007
rs10010325	4	106325802	TET2	rs7679673	2.12E-01	Prostate cancer	0.12	0.37	44.819	А	higher cancer risk	Eeles et al., Nat Genet 2009
rs10037512	5	88390431	MEF2C	rs1366594	4.98E-09	BMD (hip)	0.97	1	21.386	А	lower BMD	Rivadeneira et al., Nat Genet 2009
rs274546	5	131727766	SLC22A5	rs2188962	5.46E-07	Crohn's disease	0.42	1	70.938	Т	higher Crohn's risk	Barrett et al., Nat Genet 2008
				rs2522056	6.55E-04	Fibrinogen	0.21	0.81	101.859	G	lower fibrinogen	Dehghan et al., Circ Cardiovasc Genet 2009
				rs1016988	1.34E-03	Fibrinogen	0.17	0.87	44.707	т	lower fibrinogen	Danik et al., Circ Cardiovasc Genet 2009
				rs4143832	1.40E-01	Plasma eosinophil count	0.12	0.61	163.11	G	higher eosinophil count	Gudbjartsson et al., Nat Genet 2009
rs2256183	6	31488508	MICA	rs2844479	9.64E-10	Weight	0.12	0.46	192.427	А	increased weight	Thorleifsson et al., Nat Genet 2008
rs6457620	6	32771977	HLA locus	rs2187668	8.87E-03	Celiac disease	0.10	1	58.115	Т	higher Celiac risk	van Heel et al., Nat Genet 2007
				rs9271366	7.17E-06	Multiple sclerosis	0.35	1	77.145	G	higher MS risk	Bahlo et al., Nat Genet 2009
				rs6457617	6.89E-08	Rheumatoid arthritis	1	1	0.148	С	lower RA risk	Julia et al., Arthritis Rheum 2008
				rs6457617	6.89E-08	Rheumatoid arthritis	1	1	0.148	С	lower RA risk	WTCCC, Nature 2007
				same SNP	3.65E-08	Rheumatoid arthritis	-	-	-	G	n/a	Raychaudhuri et al., Nat Genet 2008
				rs660895	4.65E-01	Rheumatoid arthritis	0.40	1	86.619	А	lower RA risk	Plenge et al., N Engl J Med 2007
				rs2187668	8.87E-03	SLE	0.10	1	58.115	т	higher SLE risk	Hom et al., N Engl J Med 2008
				rs9272346	6.12E-01	Type 1 diabetes	0.18	0.47	59.627	G	higher T1D risk	WTCCC, Nature 2007
				rs9272346	6.12E-01	Type 1 diabetes	0.18	0.47	59.627	G	higher T1D risk	Cooper et al., Nat Genet 2008
				rs2395185	6.38E-01	Ulcerative colitis	0.22	0.59	230.832	т	lower UC risk	Silverberg et al., Nat Genet 2009
				rs9268877	2.80E-01	Ulcerative colitis	0.12	0.39	232.852	G	lower UC risk	Franke et al., Nat Genet 2008
				rs2395185	6.38E-01	Ulcerative colitis	0.22	0.59	230.832	т	lower UC risk	Asano et al., Nat Genet 2009
				rs9268877	2.80E-01	Ulcerative colitis	0.12	0.39	232.852	G	n/a	Barrett et al., Nat Genet 2009
rs7759938	6	105485647	LIN28B	rs314276	1.03E-16	Menarche (age at onset)	0.96	1	29.045	А	later menarche	Ong et al., Nat Genet 2009
				rs314280	1.35E-10	Menarche (age at onset)	0.52	1	21.883	А	later menarche	Sulem et al., Nat Genet 2009
				same SNP	8.69E-18	Menarche (age at onset)	-	-	-	С	later menarche	Perry et al., Nat Genet 2009
				rs314277	3.65E-12	Menarche (age at onset)	0.25	1	28.708	А	later menarche	He et al., Nat Genet 2009
rs1490384	6	126892853	C6orf173	rs9388489	1.03E-13	Type 1 diabetes	0.84	1	152.441	G	higher T1D risk	Barrett et al., Nat Genet 2009
rs7763064	6	142838982	GPR126	rs3817928	1.97E-11	Pulmonary function	0.59	0.89	46.773	А	reduced pulmonary function	Hancock et al., Nat Genet 2009
rs1708299	7	28156471	JAZF1	rs864745	1.31E-12	Type 2 diabetes	0.40	0.94	9.39	Т	higher T2D risk	Zeggini et al., Nat Genet 2008
rs6959212	7	38094851	STARD3NL	rs1524058	9.39E-05	BMD (spine)	0.73	1	7.951	С	lower BMD	Rivadeneira et al., Nat Genet 2009
rs2110001	7	150147955	KCNH2	rs2968863	1.33E-04	QT interval	0.10	0.85	106.115	С	longer QT interval	Pfeufer et al., Nat Genet 2009
				rs3807375	4.30E-05	QT interval	0.14	1.00	40.278	Т	longer QT interval	Holm et al., Nat Genet 2010
rs11599750	10	101795432	CPN1	rs11597390	1.54E-04	Liver enzymes levels	0.51	0.82	55.993	G	lower enzyme levels	Yuan et al., Am J Hum Genet 2008
rs1330	11	17272605	KCNJ11	rs5215	6.70E-02	Type 2 diabetes	0.26	0.53	92.601	С	higher T2D risk	Zeggini et al., Science 2007
rs494459	11	118079885	DDX6	rs4639966	2.77E-01	SLE	0.22	1	1.156	Т	lower SLE risk	Han et al., Nat Genet 2009

GIANT height SNP	Chr	Position	Nearest or OMIM gene	GWAS SNP from NHGRI catalogue	GIANT height P-value for NHGRI SNP	Disease/Trait	r ² between G	D' GIANT height ar	Distance (kb) nd NHGRI SNP	Height- increasing allele	Effect relative to height-increasing allele	Reference
rs2066807	12	55026949	STAT2	rs2066808	2.75E-08	Psoriasis	1	1	2.709	G	lower psoriasis risk	Nair et al., Nat Genet 2009
rs3110496	17	24941897	ANKRD13B	rs2138852	5.11E-01	Mean platelet volume	0.10	0.45	214.422	Т	higher platelet volume	Soranzo et al., Nat Genet 2009
				rs2138852	5.11E-01	Mean platelet volume	0.10	0.45	214.422	т	lower platelet volume	Meisinger et al., Am J Hum Genet 2008
rs4986172	17	40571807	ACBD4	rs12946454	3.23E-07	Systolic blood pressure	0.76	0.94	8.16	А	lower systolic b.p.	Newton-Cheh et al., Nat Genet 2009
rs2072153	17	44745013	ZNF652	rs16948048	4.22E-04	Diastolic blood pressure	0.32	1.00	50.452	А	lower diastolic b.p.	Newton-Cheh et al., Nat Genet 2009
rs17782313	18	56002077	MC4R	rs12970134	5.52E-04	Body mass index	0.81	0.96	33.653	А	higher BMI	Thorleifsson et al., Nat Genet 2008
				same SNP	3.48E-06	Body mass index	-	-	-	С	higher BMI	Willer et al., Nat Genet 2008
				same SNP	3.48E-06	Body mass index	-	-	-	С	higher BMI	Loos et al., Nat Genet 2008
				same SNP	3.48E-06	Obesity	-	-	-	С	higher obesity risk	Meyre et al., Nat Genet 2009
				rs12970134	5.52E-04	Waist circumference	0.81	0.96	33.653	А	lower WC	Chambers et al., Nat Genet 2008
				rs12970134	5.52E-04	Weight	0.81	0.96	33.653	А	increased weight	Thorleifsson et al., Nat Genet 2008
rs2834442	21	34612656	KCNE2	rs9982601	4.66E-01	MI (early onset)	0.17	0.66	91.658	С	lower MI risk	Kathiresan et al., Nat Genet 2009

Supplementary Table 10. List of 241 abnormal skeletal/growth genes identified in the OMIM database (http://www.ncbi.nlm.nih.gov/omim) using the following keywords: short stature, overgrowth, skeletal dysplasia, brachydactyly, and manually curating the list blind to GIANT height results.

ACAN	COL9A3	GJA1	NEU1	SIL1
ADAMTS10	СОМР	GLB1	NF1	SLC26A2
ADAMTS2	CRTAP	GLI3	NIPBL	SLC29A3
ADAMTSL2	CTDP1	GNAS	NOG	SLC2A2
AGPS	CTSK	GNPAT	NPR2	SLC34A3
ALG12	CUL4B	GNPTAB	NSD1	SLC35C1
ALMS1	CUL7	GPC3	OCRL	SLC35D1
ALPL	CYP11B1	GUSB	OFD1	SLC37A4
ANKH	CYP19A1	HCCS	PAPSS2	SLC39A13
ARL6	CYP21A2	HESX1	РАХЗ	SLC4A4
ARSB	CYP27B1	HMGA2	PAX8	SLC6A8
ARSE	DHCR7	HOXD13	PCNT	SMARCAL1
ATP6V0A2	DYM	HPRT1	PEX7	SMC1A
ΑΤΡ7Α	EBP	HRAS	PHEX	SMC3
ATP8B1	EFNB1	HSPG2	PHF6	SMPD1
ATR	EIF2AK3	HYAL1	PITX2	SMS
ATRX	ERCC2	ІСК	POU1F1	SOS1
B3GALTL	ERCC3	IDUA	PQBP1	SOST
B4GALT7	ESCO2	IFT80	PROP1	SOX3
BBS1	EVC	IGBP1	PTCH1	SPG20
BBS10	EVC2	IGF1	PTCH2	SRY
BBS12	EXT1	IGF1R	PTEN	STAT5B
BBS2	EXT2	IGF2	PTH1R	TAZ
BBS4	FANCA	IHH	PTPN11	TBCE
BBS5	FANCB	IKBKG	RAB23	TBX1
BBS7	FANCC	JAG1	RAB3GAP1	TBX15
BBS9	FANCD2	KCNJ2	RAB3GAP2	TCF4
BMPR1B	FANCE	KDM5C	RAF1	TGFBR1
BRAF	FANCF	KIAA1279	RAI1	TGFBR2
BRCA2	FANCG	KRAS	RBM28	THRB
ВТК	FANCI	LBR	RECQL4	TNFRSF11B
BUB1B	FANCL	LEMD3	RMRP	TP63
C7orf11	FANCM	LEPRE1	RNF135	TRAPPC2
CA2	FBN1	LHX4	ROR2	TRIM32
CCDC28B	FBN2	LIFR	RPL11	TRIM37
CEP290	FGD1	LIG4	RPL35A	TRPS1
CHD7	FGF23	LMNA	RPL5	TRPV4
CHRNG	FGFR2	LRP5	RPS17	UBR1
CHST3	FGFR3	MAP2K1	RPS19	WNT7A
CLCN5	FLNA	MAP2K2	RPS24	WRN
COL10A1	FLNB	MATN3	RPS6KA3	ZBTB16
COL11A1	FOXC1	MC4R	RPS7	
COL11A2	FUCA1	MECP2	RUNX2	
COL1A1	G6PC	MGP	SBDS	
COL1A2	GALNS	МККЅ	SDHA	
COL2A1	GDF5	MKS1	SECISBP2	
COL5A1	GH1	MMP13	SEMA3E	
COL5A2	GHR	MRPS16	SHH	
COL9A1	GHRHR	MYCN	SHOX	
COL9A2	GHSR	NBN	SHROOM4	

Supplementary Table 11. Height SNPs found to be located near or in the abnormal skeletal/growth genes identified in the OMIM database and listed in Supplementary Table 10.

SNP	Abnormal	The closest gene to	The height SNP is in
	(OMIM)	abnormal	skeletal/growth gene
		skeletal/growth gene	
rs16942341	ACAN	yes	yes
rs4072910	ADAMTS10	yes	no
rs16964211	CYP19A1	yes	yes
rs9967417	DYM	yes	yes
rs11684404	EIF2AK3	yes	yes
rs6457821	FANCE	no	no
rs143384	GDF5	yes	yes
rs2665838	GH1	no	no
rs572169	GHSR	yes	yes
rs7971536	GNPTAB	no	no
rs1351394	HMGA2	yes	yes
rs2871865	IGF1R	yes	yes
rs12470505	IHH	yes	no
rs17782313	MC4R	yes	no
rs227724	NOG	yes	no
rs422421	NSD1	no	no
rs473902	PTCH1	yes	yes
rs3764419	RNF135	no	no
rs10874746	RPL5	no	no
rs9472414	RUNX2	no	no
rs10838801	SLC39A13	no	no

Supplementary Table 12. Nominally significant biological pathways following gene set enrichment analysis of height meta-analysis.

Database	Biological pathway or gene set	Original # genes in gene set	# genes in gene set analyzed by GSEA [§]	Nominal GSEA <i>P</i> -value	False discovery rate (FDR)	Expected # genes above 95 th percentlie cutoff	Observed # genes above 95 th percentlie cutoff	# genes in gene set 300 kb or less from validated height SNPs	Genes 300 kb or less from validated height SNPs	Number of OMIM genes (Supp. Table 10)
KEGG	Hedgehog signaling pathway	54	50	0.0009	0.0777*	3	9	9	BMP6, <u>IHH</u> , <u>PTCH1</u> , WNT6, WNT9A,	7
KEGG	Camma heyachlorocyclohoyano dogradation	26	21	0.0028	0.0569*	1	E	2	FBXW11, HHIP, WNT10A, WNT3A	1
KEGG	MAPK signaling pathway	269	243	0.0040	0.2796	12	22	23	ARRB1, CACNB1, CHUK, FGFR3, FGFR4, GNA12, MKNK2, MEF2C, MAP3K3, MOS, GADD45B, NF1, NFATC4, PPM1A, MAPK9, MAP2K3, RASA2, RPS6KA1, TGFB1, TGFB2, TNF. MAP3K14, RASGRP3	16
KEGG	Antigen processing and presentation	77	52	0.0132	0.3014	3	7	16	HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-DOB, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, LTA, PSME1, PSME2, TAP1, TAP2	0
KEGG	TGF-beta signaling pathway	83	80	0.0167	0.3131	4	9	10	AMH, BMP6, ID4, LTBP1, TGFB1, TGFB2, TNF, <u>GDF5</u> , CUL1, <u>NOG</u>	7
KEGG	Type II diabetes mellitus	45	43	0.0172	0.2934	2	6	9	INSR, KCNJ11, PKM2, PRKCD, PRKCZ, MAPK9, ABCC8, TNF, SOCS2	1
KEGG	FC epsilon RI signaling pathway	79	73	0.0282	0.3237	4	8	8	CSF2, IL5, IL13, LYN, PRKCD, MAPK9, MAP2K3, TNF	2
KEGG	Folate biosynthesis	37	36	0.0305	0.3549	2	5	1	ATP13A2	2
KEGG	Citrate cycle TCA cycle	27	26	0.0417	0.3464	1	4	5	CS, PC, PCK2, SDHB, SUCLG2	1
Ingenuity	Hepatic Cholestasis	61	57	0.0237	1	3	7	12	ABCC2, CYP27A1, ESR1, FGFR4, INSR, SLC4A2, TAP1, TAP2, TNF, MAP3K14, SLC01B3, SLC01C1	0
Ingenuity	VDR/RXR Activation	63	62	0.0341	0.6864	3	7	6	CSF2, GTF2B, PPARD, PSMC5, TGFB2, NCOA1	2
Ingenuity	Role of BRCA1 in DNA Damage Response	29	29	0.0507	0.4980	1	4	4	BRCA2, FANCC, <u>FANCE</u> , RAD50	9
Ingenuity	Fc Epsilon RI Signaling	20	17	0.0531	0.8701	1	3	5	CSF2, IL5, IL13, LYN, TNF	2
PANTHER	TGF-beta signaling pathway	64	59	0.0025	0.1844*	3	9	8	AMH, BMP3, BMP6, SKI, TGFB1, TGFB2, <u>GDF5</u> , DCP1A	7
PANTHER	Heagenog signaling pathway	14	14	0.0042	0.2033*	1	4	3	IHH, PICHI, FBXW11	7
PANTHER	Apoptosis signaling pathway	53	49	0.0109	0.2250*	2	7	10	LTA, LTB, TNFSF10, MAP3K14, RIPK3	0
PANTHER	Endothelin signaling pathway	19	19	0.0144	0.2319*	1	4	4	ADCY3, EDN2, PRKG2, ADCY4	1

PANTHER	Parkinson disease	43	41	0.0171	0.2348*	2	6	5	LYN, SEPT2, PSMB3, CUL1, STUB1	0
PANTHER	B cell activation	24	22	0.0223	0.2368*	1	4	4	CD79B, NFKBIL1, PRKCD, PRKCZ	0
PANTHER	Nicotinic acetylcholine receptor signaling pathway	42	39	0.0453	0.3888	2	5	3	MYO1F, MYO6, MYO9B	2
PANTHER, MF	Histone	86	31	0.0001†	0.0028*	2	9	29	HIST1H1C, HIST1H1D, HIST1H1E, HIST1H1T, HIST1H2AE, HIST1H2AD, HIST1H1A, HIST1H2AC, HIST1H2AB, HIST2H2AC, HIST1H3A, HIST1H3D, HIST1H3C, HIST1H3E, HIST1H3G, HIST1H3B, HIST1H4A, HIST1H4D, HIST1H4F, HIST1H4C, HIST1H4H, HIST1H4B, HIST1H4E, HIST1H4G, HIST1H3F, H1FX, H1FOO, HIST2H2AB, HIST2H3D	0
PANTHER, MF	Extracellular matrix glycoprotein	111	85	0.0015	0.1157*	4	12	16	ACAN, FBLN2, EFEMP1, GPC5, GP9, LTBP1, LTBP2, LTBP3, MFAP2, MSLN, FBLN5, EFEMP2, ADAMTSL3, HAPLN3, SCUBE3, MPFL	6
PANTHER, MF	Annexin	71	64	0.0038	0.1821*	3	9	13	AIF1, FBLN2, EFEMP1, LETM1, LTBP1, LTBP2, LTBP3, NUCB2, PRKCD, PKN2, PRKCZ, FBLN5, EFEMP2	1
PANTHER, MF	Transcription factor	198	127	0.0041	0.2089*	6	14	13	NR2F6, ESR1, NFIC, PPARD, BAT2, YEATS4, NCOA1, SCMH1, SFMBT1, MBTD1, GATAD1, L3MBTL3, VGLL2	6
PANTHER, MF	Exoribonuclease	35	25	0.0069	0.2009*	1	5	7	ISG20, PAN2, EXOSC2, EXOSC5, CNOT6, ISG20L1, PNPT1,	0
PANTHER, MF	Other transcription factor	349	298	0.0117	0.3260	15	24	30	RUNX3, E2F1, E2F2, ETS1, ETV5, ETV6, FLI1, ID4, IRF1, MEF2C, ATXN3, NFATC4, NRL, PA2G4, RELA, SKI, SNAPC4, STAT2, TEAD1, TEAD3, TBX4, CREB5, IRF9, FEV, UTP6, <u>GNPTAB</u> , LIN28, RFXDC1, FOXR1, LIN28B	6
PANTHER, MF	Metalloprotease	158	133	0.0158	0.4290	7	13	10	CPN1, PAPPA, ADAM7, ADAMTS3, ADAM28, MMP24, PMPCA, ADAMDEC1, PAPPA2, ADAMTS10	4
PANTHER, MF	Ligase	69	57	0.0206	0.3908	3	7	5	CTPS, DCI, SUCLG2, ZMIZ1, GDPD5	1
PANTHER, MF	ATP-binding cassette (ABC) transporter	46	34	0.0240	0.4536	2	5	7	ABCA3, ABCC2, TAP1, TAP2, ABCB6, RAD50, ABCB8	0
PANTHER, MF	Other phosphatase	82	71	0.0260	0.3693	4	8	8	PPAP2A, FIG4, MTMR11, NUDT4, NUDT3, INPP5E, ACPL2, LOC283871	2
PANTHER, MF	Damaged DNA-binding protein	27	25	0.0327	0.3545	1	4	3	BRCA2, RAD50, UTP6	0
PANTHER, MF	Other RNA-binding protein	192	151	0.0382	0.4413	8	13	14	CARS, STAU1, SLBP, FUBP1, FUBP3, IGF2BP3, IGF2BP2, CPSF6, HNRPUL1, ANKZF1, BRUNOL5,	1

									RBM45 7EAND2B C14orf21	
PANTHER, MF	Major histocompatibility complex antigen	46	26	0.0386	0.3567	1	4	14	HFE, HLA-B, HLA-C, HLA-DMA, HLA- DMB, HLA-DOB,HLA-DQA1, HLA- DQA2,HLA-DQB1, HLA-DRA, HLA- DRB1, HLA-DRB5, MICA, MICB	0
PANTHER, MF	Kinase	30	29	0.0518	0.4439	1	4	2	DGKE, DCAKD	0
,							-			
GO:0005694	Chromosome	147	111	5e-5†	0.0905*	6	16	29	HIST1H1C, HIST1H1D, HIST1H1E, HIST1H1T, HIST1H2AD, HIST1H2BD, HIST1H2BB, HIST1H2AD, HIST1H2BD, HIST1H2BB, HIST1H1A, HMGA1, <u>HMGA2</u> , HIST1H2AC, HIST1H2AB, HIST2H2AC, HIST1H2BH, HIST1H2BC, HIST2H2BE, HIST1H4G, HIST1H3F, H1FX, RAD50, TINF2, CENPO, H1FOO, HIST2H2AB, C6orf173, SETD8, CENPP, HIST2H2BF, HIST2H3D	4
GO:0060389	Pathway-restricted SMAD protein phosphorylation	14	14	0.0001	0.0984*	1	5	3	BMP6, TGFB1, TGFB2	0
GO:0000786	Nucleosome	64	34	0.0002	0.0650*	2	8	21	HIST1H1C, HIST1H1D, HIST1H1E, HIST1H1T, HIST1H2AD, HIST1H2BD, HIST1H2BB, HIST1H2AD, HIST1H2BD, HIST1H2AB, HIST2H2AC, HIST1H2AB, HIST1H2BC, HIST2H2BE, HIST1H4G, HIST1H3F, H1FX, H1FOO, HIST2H2AB, HIST2H2BF, HIST2H3D	0
GO:0006334	Nucleosome assembly	80	47	0.0003	0.0966*	2	9	22	HIST1H1C, HIST1H1D, HIST1H1E, HIST1H1T, HIST1H2AD, HIST1H2BD, HIST1H2BB, HIST1H1A, NAP1L4, HIST1H2AC, HIST1H2AB, HIST2H2AC, HIST1H2BH, HIST1H2BC, HIST2H2BE, HIST1H4G, HIST1H3F, H1FX, H1FOO, HIST2H2AB, HIST2H2BF, HIST2H3D	0
GO:0050680	Negative regulation of epithelial cell proliferation	22	21	0.0006	0.0705*	1	6	9	RUNX3, CDK6, CDKN1C, PPARD, PTCH1, TGFB1, TGFB2, TSC2, TINF2	0
GO:0009653	Anatomical structure morphogenesis	103	94	0.0007	0.1567*	5	13	15	CHUK, RPL10A, NEDD8, PITX1, PKD1, POU5F1, <u>PTCH1</u> , WHSC1, LST1, IGF2BP3, IGF2BP2, RCAN3, SCMH1, SIX4, WNT3A	1
GO:0032147	Activation of protein kinase activity	10	10	0.0008	0.0994*	1	4	3	INSR, TGFB2, LYK5	0
GO:0002474	Antigen processing and presentation of	11	10	0.0010	0.0764*	1	4	3	HFE, HLA-B, HLA-C	0

	peptide antigen via MHC class I									
GO:0000175	3'-5'-exoribonuclease activity	10	10	0.0013	0.0679*	1	4	4	ISG20, EXOSC2, EXOSC5, PNPT1	0
GO:0007259	JAK-STAT cascade	27	26	0.0016	0.1300*	1	6	7	FGFR3, <u>GH1</u> , IL6ST, PKD1, STAT2, SOCS2, IL31RA	2
GO:0003007	Heart morphogenesis	29	28	0.0021	0.1520*	1	6	4	INSR, <u>PTCH1</u> , TGFB2, ZMIZ	4
GO:0030879	Mammary gland development	29	29	0.0023	0.1692*	1	6	5	BRCA2, <u>IGF1R</u> , <u>PTCH1</u> , TGFB1, WNT3A	2
GO:0043560	Insulin receptor substrate binding	12	12	0.0024	0.0888*	1	4	4	IGF1R, INSR, PRKCD, PRKCZ	1
GO:0000421	Autophagic vacuole membrane	13	12	0.0026	0.0907*	1	4	3	TM9SF1, ATG9A, ATG9B	0
GO:0005578	Proteinaceous extracellular matrix	225	198	0.0026	0.2502*	10	20	25	ACAN, ECM2, FBLN2, EFEMP1, GPC5, LOXL1, LTBP1, LTBP2, MFAP2, NTN2L, OMD, OGN, TGFB1, WNT6, WNT9A, ADAMTS3, FBLN5, MMP24, ANGPTL4, ASPN, ADAMTSL3, WNT10A, <u>ADAMTS10</u> , WNT3A, HAPLN3	6
GO:0007405	Neuroblast proliferation	14	14	0.0035	0.1436*	1	4	3	ID4, FRS2, HHIP	0
GO:000080	G1 phase of mitotic cell cycle	10	7	0.0041	0.0909*	0	3	4	CDK6, CDKN1C, E2F1, MAP3K11	0
GO:0032355	Response to estradiol stimulus	53	53	0.0041	0.2674	3	8	7	<u>GH1</u> , <u>IHH</u> , INSR, NOS3, <u>PTCH1</u> , TGFB1, SOCS2	3
GO:0031965	Nuclear membrane	86	81	0.0058	0.3132	4	10	12	ABL1, MYO6, PML, TRIM27, NUPL2, NUP210, TMEM176B, DTL, INTS2, SENP2, QSOX2, LASS3	0
GO:0005743	Mitochondrial inner membrane	254	222	0.0059	0.3414	11	20	19	CYP27A1, DCI, LETM1, NDUFA7, NDUFB1, NDUFB10, PC, PHB, SDHB, SLC3A1, PPIF, ACAA2, ATP5L, ABCB8, PMPCA, C4orf14, COQ10A, DHRS1, SLC25A45	2
GO:0010628	Positive regulation of gene expression	27	25	0.0059	0.2293*	1	5	3	CSF2, MAPK9, TGFB1	0
GO:0000398	Nuclear mRNA splicing, via spliceosome	45	45	0.0061	0.2757	2	7	7	HNRPM, SFRS10, BAT1, SF3A2, SF3B4, TRA2A, LSM7	Number of OMIM genes (Supp. Table 10)
GO:0005242	Inward rectifier potassium channel activity	18	16	0.0061	0.1952*	1	4	5	KCNH2, KCNJ1, KCNJ2, KCNJ5, KCNJ12	7
GO:0017148	Negative regulation of translation	16	16	0.0063	0.1969*	1	4	3	EIF2AK3, IGF2BP3, IGF2BP2	1

GO:0016604	Nuclear body	16	16	0.0067	0.1936*	1	4	3	SKI, PCGF2, BTBD14A	16
GO:0042612	MHC class I protein complex	22	16	0.0076	0.2048*	1	4	6	HFE, HLA-B, HLA-C, MICA, MICB, PROCR	0
GO:0007067	Mitosis	192	180	0.0081	0.3591	9	17	16	CCNF, E4F1, SEPT2, YEATS4, <u>HMGA2</u> , TIMELESS, STAG1, SSSCA1, RGS14, PDS5B, FZR1, NCAPG, NUP37, FAM44B, NY-SAR-48, SETD8	7
GO:0007569	Cell aging	27	26	0.0083	0.2728	1	5	3	BRCA2, PML, ZMIZ1	1
GO:0060395	SMAD protein signal transduction	10	9	0.0085	0.1814*	0	3	2	BMP6, SKI	2
GO:0001763	Morphogenesis of a branching structure	10	9	0.0087	0.1781*	0	3	2	IHH, TGFB1	2
GO:0001501	Skeletal system development	126	113	0.0088	0.3536	6	12	11	ACAN, BMP3, BMP6, FGFR3, <u>IHH</u> , LTBP3, NPR3, PITX1, <u>NOG</u> , <u>EIF2AK3</u> , LOC283871	1

Nominal gene set enrichment analysis (GSEA) *p*-values and false discovery rates were computed for biological gene sets taken from four different resources using MAGENTA (Segrè *et al.*, PLoS Genetics, *in press*, 2010). Results are presented for the nominally significant pathways (*p*<0.01 for Gene Ontology (GO) and *p*<0.05 for the other databases). The Bonferroni corrected cutoffs for the different databases are: KEGG (135 pathways): *p*<0.0004, Ingenuity (81 pathways): *p*<0.0006, PANTHER (94 pathways): *p*<0.0005, PANTHER, MF (Molecular Function classification; 216 gene sets): *p*<0.0002, and Gene Ontology (GO) biological process and molecular function terms (1,785 gene sets): *p*<0.0003. (†) specifies a gene set that passes or is close to the Bonferroni cutoff. Since Bonferroni correction is stringent due to considerable gene overlap between pathways within each database, we also evaluated the statistical significance of each gene set using a false discovery rate (FDR), calculated for each database separately. An asterisk (*) refers to pathways with an FDR<0.25 (i.e. one in four gene sets more significant than the given gene set is likely to be false). ^{\$} The number of genes per gene set analyzed by MAGENTA refers to the gene set size after removing genes with no SNPs in their gene region, all but one gene in each subset of genes within 300 kb of the validated height SNPs are listed, including those removed due to physical clustering adjustment or due to lack of SNPs in their region. Underlined genes are those that came up as one of the 21 relevant OMIM height genes captured by the 180 associated signals (i.e. those listed in Supplementary Table 11)

Supplementary Table 13. Biological evidence for genes at the 180 height associated loci. The list of genes is based on genes listed in Supplementary Table 12 (i.e. within a nominally associated pathway and less than 300kb away from one of the 180 height-associated signals), genes with expression evidence where the associated signal had an $r^2 > 0.8$ with the peak SNP in the region in any of the tissues listed in Supplementary Table 7, and genes listed in Supplementary Table 8, where the associated signal was in high LD with a nsSNP. OMIM Evidence is based on genes obtained from the OMIM database (http://www.ncbi.nlm.nih.gov/omim) and listed in Supplementary Table 11. Jackson Lab Evidence was obtained by matching Gene column entries to Jackson Lab database (http://www.informatics.jax.org/) on genes reported to have either "growth/size", "limb/tail/digit"or "skeleton" phenotype.

Gene	Expression Evidence	Missense SNP in LD r2>=0.8 (amino acid change, Polyphen2 prediction)	OMIM Evidence	Gene nearest to height signal	Jackson Lab Evidence	Biological Pathways	Number of lines of evidence
		rs938608 (S930I, possibly damaging)			growth/size		
		rs938609 (S939T, probably damaging)			limbs/digit/tail		
ACAN		rs2882676 (E1508A, benign)	yes	yes	skeleton	Extracellular matrix glycoprotein	5
						Negative regulation of epithelial	
CDK6	Lymphocyte			yes	growth/size	cell proliferation	4
		rs1805165 (A704S, benign)			growth/size		
		rs13045 (Q166R, benign)			limbs/digit/tail		
EIF2AK3		rs867529 (S136C, benign)	yes	yes	skeleton		4
FGFR4		rs376618 (P136L, benign)		yes	growth/size	MAPK signaling pathway	4
					growth/size		
					limbs/digit/tail		
GDF5			yes	yes	skeleton	TGFbeta signaling pathway	4
					growth/size		
HMGA2			yes	yes	limbs/digit/tail	Chromosome	4
ID4	Omentum			yes	growth/size	TGFbeta signaling pathway	4
					growth/size		
					limbs/digit/tail		
IGF1R			yes	yes	skeleton	Mammary gland development	4
					growth/size		
					limbs/digit/tail		
NOG			yes	yes	skeleton	TGFbeta signaling pathway	4
	Omentum						
PML	Subcutaneous fat	rs5742915 (F645L, benign)		yes		Nuclear membrane	4
					growth/size		
					limbs/digit/tail		
PTCH1			yes	yes	skeleton	Hedgehog signaling pathway	4

	Liver						
STAT2	Omentum Subcutaneous fat	rs2066807 (M5941, benign)		VAS		Other transcription factor	1
	Subcutaneous lat		Ves	Ves		Metalloprotease	3
		rs4842838 (V6611, benign)	yc3	Ves		Extracellular matrix glycoprotein	3
ADAMIJES				yes	growth/size		5
					limbs/digit/tail		
BMP2				ves	skeleton	Hedgehog signaling pathway	3
				ŕ	growth/size		
BMP6				yes	skeleton	Hedgehog signaling pathway	3
					growth/size		
CYP19A1			yes	yes	skeleton		3
		rs9835332 (T609R, benign)					
C3orf63	Subcutaneous fat	rs958755 (Q38P, benign)		yes			3
					growth/size		
					limbs/digit/tail		
DYM			yes	yes	skeleton		3
5551454					growth/size		
EFEMP1				yes	skeleton	Extracellular matrix glycoprotein	3
					growth/size		
					limbs/digit/tail	Transcription factor	2
ESRI				yes	skeleton	Otherstream acciention factor	3
EIV6				yes	growth/size	Other transcription factor	3
EANCE		rc7761870 (\$2041, bonign)	NOC			ROLE OF BRCAT IN DIVA damage	2
		137701870 (3204L, benign)	yes	NOC	growth/sizo	Other transcription factor	2
				yes	growth/size		5
FRS2				Ves	limbs/digit/tail	Neuroblast proliferation	з
GH1			Ves	yes	growth/size	IAK-STAT cascade	3
			yes		growth/size		3
GHSR			ves	ves	skeleton		3
GNA12	Lymphocyte		7	ves		MAPK signaling pathway	3
HHIP				yes	growth/size	Hedgehog signaling pathway	3
HMGA1				yes	growth/size	Chromosome	3
					growth/size		
					limbs/digit/tail		
ІНН			yes		skeleton	Hedgehog signaling pathway	3
INSR				yes	growth/size	Type-2 diabetes	3
LTBP1				yes	skeleton	TGFbeta signaling pathway	3

					growth/size		
MC4R			yes	yes	skeleton		3
					growth/size		
					limbs/digit/tail		
MEF2C				yes	skeleton	MAPK signaling pathway	3
MFAP2	Omentum			yes		Extracellular matrix glycoprotein	3
					growth/size		
NFATC4				yes	skeleton	MAPK signaling pathway	3
					growth/size		
PAPPA				yes	skeleton	Metalloprotease	3
					limbs/digit/tail	Anatomical structure	
PITX1				yes	skeleton	morphogenesis	3
PPARD				yes	growth/size	VDR/RXR activation	3
PPARD				yes	growth/size	VDR/RXR activation	3
					growth/size		
					limbs/digit/tail		
PRKG2				yes	skeleton	Endothelin signaling pathway	3
					growth/size,		
					limbs/digit/tail,		
RUNX2			yes		skeleton	TGFbeta signaling pathway	3
RYBP	Omentum			yes	growth/size		3
SCMH1				yes	skeleton	Transcription factor	3
SLBP	Lymphocyte			yes		Other RNA-binding protein	3
					growth/size		
					limbs/digit/tail		
SOCS2				yes	skeleton	Type-2 diabetes	3
		rs1344642 (R583Q, probably damaging)			growth/size		
STK36		rs1863704 (G1003D, benign)			skeleton	Hedgehog signaling pathway	3
TBX2				yes	limbs/digit/tail	Other transcription factor	3
TEAD1				yes	growth/size	Other transcription factor	3
					growth/size		
					limbs/digit/tail		
TGFB2				yes	skeleton	TGFbeta signaling pathway	3
	Omentum						
TSEN15	Subcutaneous fat	rs2274432 (G19D, probably damaging)		yes			3
SEPT2	Lymphocyte			yes			2
ADAM28				yes		Metalloprotease	2
ADAMTS17				yes		Metalloprotease	2

ADAMTS3				yes		Metalloprotease	2
AKD1	Omentum	rs2277114 (V1555I, benign)					2
ANKRD13B	Subcutaneous fat			yes			2
BNC2				yes	growth/size skeleton		2
C6orf173				yes		chromosome	2
CCDC108				yes			2
CCDC66	Osteoblast	rs7637449 (R460Q, probably damaging)					2
CCDC91		rs11049488 (A36T, benign)		yes			2
CLIC4				yes	growth/size		2
CLPS		rs2766597 (L8P, possibly damaging)			growth/size		2
CPN1				yes		Metalloprotease	2
DDX27	Subcutaneous fat	rs11553387 (G206V, benign)					2
DNM3	Lymphocyte			yes			2
DTL				yes		Nuclear membrane	2
ECM2		rs10120210 (O56P. probably damaging)				Proteinaceous extracellular matrix	2
EXOSC5		rs10853751 (T5M, benign)				Exoribonuclease	2
FBLN2	Omentum					Extracellular matrix glycoprotein	2
FBXW11				ves		Hedgehog signaling pathway	2
FOLH1	Subcutaneous fat			yes			2
FUBP3				yes		Other RNA-binding protein	2
GNPTAB			yes			Other transcription factor	2
GPC5				yes		Extracellular matrix glycoprotein	2
H1FX	Lymphocyte					Histone	2
HLA-B	Liver					Antigen processing and presentation	2
IGF2BP2				yes		Other RNA-binding protein	2
IGF2BP3				yes		Other RNA-binding protein	2
ITPR3		rs2229642 (L2436V, benign)			growth/size		2
KCNQ1				yes	growth/size		2
L3MBTL3				yes		Transcription factor	2
LIN28				yes		Other transcription factor	2
LIN28B				yes		Other transcription factor	2
LPAR1				yes	growth/size		2
LRRC37B	Omentum			yes			2
LTBP2				yes		Extracellular matrix glycoprotein	2

	Liver						
LUZP1	Subcutaneous fat				growth/size		2
						Major histocompatibility complex	
MICA				yes		antigen	2
MKL2				yes		Other transcription factor	2
MTMR11		rs11205303 (M159V, benign)				Other phosphatase	2
						Nicotinic acetylcholine receptor	
MYO9B				yes		signaling pathway	2
NFIC				yes		Transcription factor	2
NME2				yes	growth/size		2
					growth/size		
					limbs/digit/tail		
NPPC				yes	skeleton		2
					growth/size		
					limbs/digit/tail		
NPR3				yes	skeleton		2
NUCB2				yes		Annexin	2
PAPPA2				yes		Metalloprotease	2
					growth/size		
					limbs/digit/tail		
PCSK5				yes	skeleton		2
					growth/size		
					limbs/digit/tail		
PDS5B				yes	skeleton		2
					growth/size		
PEX2				yes	skeleton		2
					growth/size		
					limbs/digit/tail		
РІР4К2В				yes	skeleton		2
PKN2				yes		Annexin	2
РРАР2А	Omentum					Other phosphatase	2
PPIF				yes		Mitochondrial inner membrane	2
PRKCZ				yes		Type-2 diabetes	2
PSMB3	Osteoblast					Parkinson disease	2
PTPRJ				yes	growth/size		2
QSOX2				yes		Nuclear membrane	2
REST		rs3796529 (P797L, probably damaging)			growth/size		2
RPL5			yes	yes			2

	Liver						
SLC22A4	Subcutaneous fat	rs272893 (I306T, benign)					2
SLC22A5				yes	growth/size		2
					growth/size limbs/digit/tail		
SLC39A13			yes		skeleton		2
SLIT3				yes	growth/size		2
	Liver						
	Omentum						
SOCS5	Subcutaneous fat			yes			2
TNS1				yes		Other phosphatase	2
TRIP11				yes	growth/size		2
UTP6	Liver					Other transcription factor	2
VGLL2				yes		Transcription factor	2
	Lymphocyte						
ZBTB24	Omentum		-	yes			2
ZNFX1		rs6512577 (M1259I, benign)		yes			2
AK092571	Subcutaneous fat						1
	Omentum						
AL117656	Subcutaneous fat						1
	Omentum						
AL161980	Subcutaneous fat						1
ATP6V1E2	Subcutaneous fat						1
B3GNT8		rs284662 (S137G, benign)					1
	Liver						
	Omentum						
BC030091	Subcutaneous fat						1
	Liver						
	Lymphocyte						
C17orf42	Omentum Subsutancous fat						1
C170/142	Subcutaneous fat						1
C170f182							1
C20011199	Lymphocyte	re1150701 (C1504, unlus euro)					1
	Omentus	151150781 (0150A, UNKNOWN)					
	Omentum						
CDK2AP1	Lymphocyte						1
Contig21370_							
кL	Omentum						1

Contig40232					
RC	Subcutaneous fat				1
Contig41005_					
RC	Liver				1
Contig43791_					
RC	Omentum				1
	Omentum				
CWF19L1	Subcutaneous fat				1
FAM173A	Lymphocyte				1
FARP2	Omentum				1
FNDC3B		rs7652177 (T179S, benign)			1
	Omentum				
HAGHL	Subcutaneous fat				1
HDLBP		rs7578199 (N418S, benign)			1
HSS00017874	Omentum				1
HSS00085450	Subcutaneous fat				1
HSS00174467	Omentum				1
	Lymphocyte				
INTS7	Omentum				1
JMJD4	Osteoblast				1
MSTP9	Liver				1
	Liver				
	Omentum				
N4BP2L2	Subcutaneous fat				1
NSD1			yes		1
	Lymphocyte				
PFAAP5	Osteoblast				1
	Omentum				
PIP5K2B	Subcutaneous fat				1
PPA2	Omentum				1
	Omentum				
QSCN6L1	Subcutaneous fat				1
RMI1		rs1982151 (N455S, benign)			1
RNF135			yes		1
SLC23A3	Omentum				1
SMPD2		rs1476387 (R265S, benign)			1
SNAP47	Liver				1
TCF19		rs2073721 (M211V, benign)			1

TMEM4	Lymphocyte				1
	Omentum				
TP53I13	Subcutaneous fat				1
USP52	Osteoblast				1
VPS13C		rs3784634 (R931K, benign)			1
		rs3770213 (L956H, benign)			
ZNF142		rs3770214 (S751G, benign)			1
ZNF311		rs6456880 (K511Q, benign)			1

Supplementary Figures

Supplementary Figure 1. Quantile-quantile plot of SNPs after Stage 1 GIANT GC-corrected metaanalysis (black), after removal of SNPs near 47 loci previously shown to associated with height in Caucasians (blue), and after removal of SNPs near 180 loci shown to associate with height in this study (red). All SNPs near (2Mb window) or in linkage disequilibrium ($r^2 \ge 0.01$) with the 47 or 180 index height SNPs were excluded to draw the blue and red distributions, respectively.

Supplementary Figure 2. 199 loci associated with adult height variation. Karyogram displaying the genome location of the 180 height SNPs identified from the primary meta-analysis (green) and the 19 secondary signals (red) discovered in the conditional analysis to be associated with height. The closest genes to the SNPs (gray) are followed by a MIM (blue) label if the gene underlies a skeletal growth-related Mendelian disorder described in OMIM. The plot was created using Affyrmation (http://genepipe.ngc.sinica.edu.tw/affyrmation/).

Supplementary Figure 3. A second example regional association plot of a locus with a secondary signal before (a) and after (b) conditioning. The plots are centered on the conditioned SNP (yellow diamond) at the locus. The secondary signal SNP is highlighted as the pink diamond. r^2 is based on the CEU HapMap II samples. The blue line and right hand Y axis represent CEU HapMap II based recombination rates. Created by LocusZoom (http://csg.sph.umich.edu/locuszoom/).

Supplementary Methods Tables

Supplement	supplementary Methods Table 1. Study design, number of individuals and sample quality control for genome-wide association study cohorts.								
	Study	Study	Total		Sample QC	Sample	Anthropo-		
Short name	Full name	design	sample size (N)	Call rate*	other exclusions	s in analyse s (N)	metric assessment method	References	
Stage 1 (GW	A studies)								
ADVANCE	Atherosclerotic Disease, VAscular FunctioN, and GenetiC Epidemiology	Population- based case- control (multi ethnic)	599 (Europeans)	>98.5%	 duplicates missing weight or height 	584: 275 case, 309 ctrls	measured	Assimes T.L. et al. Susceptibility locus for clinical and subclinical coronary artery disease at chromosome 9p21 in the multi-ethnic ADVANCE study. Hum Mol Genet. (2008) 17(15):2320-8.	
AGES	Age, Gene/Environment Susceptibility- Reykjavik Study	Population- based	3219	≥ 97%	1) mismatch with previous genotypes; 2) remove A/T & G/C SNPs; 3) remove SNPs not in HapMap	3219	measured	Harris T.B. et al. Age, Gene/Environment Susceptibility-Reykjavik Study: multidisciplinary applied phenomics. American Journal of Epidemiology (2007) 165 (9): 1076-87	
Amish HAPI Heart Study	Amish Heredity and Phenotype Intervention Heart Study	Founder population	918	≥ 93%	 Misidentified pedigree relationships Misidentified sex 	907	measured	Mitchell B.D. et al. The genetic response to short-term interventions affecting cardiovascular function: Rationale and design of the Heredity and Phenotype Intervention (HAPI) Heart Study. Am Heart J (2008) 823:828,	
ARIC	Atherosclerosis Risk in Communities Study	Population- based	8861 (whites)	≥ 90%	 True sex/gender mismatch Discordant genotype with earlier TaqMan genotyping. If 10/47 genotypes discordant -> exclude First-degree relative PC>8SD in Eigenstrat run (10 iterations with 10 PCs) Outlier based on average IBS missing height or other covariate 	8110	measured	 The ARIC Investigators. Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. Am. J. Epidemiol. (1989) 129: 687-702. Heard-Costa N.L. et al. NRXN3 is a novel locus for waist circumference: a genome-wide association study from the CHARGE Consortium. Plos Genet. (2009) 5(6): e1000539. 	
B58C-T1DGC	British 1958 birth cohort (Type 1 Diabetes Genetic Consortium controls)	Population- based	2592	≥ 98%	 contamination; non-European identity; Missing body height. 	2591	measured	 (1) Strachan D.P. et al. Lifecourse influences on health among British adults: effects of region of residence in childhood and adulthood. Int J Epidemiol (2007) 36:522-531 (2) Barrett J.C. et al. The Type 1 Diabetes Genetics Consortium. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet (2009) 41:703-707 	
B58C-WTCCC	British 1958 birth cohort (Wellcome Trust Case Control Consortium controls)	Population- based birth cohort	1502	≥97%	 contamination; non-European identity and relatedness; Missing body height. 	1479	measured	The Wellcome Trust Case Control Consortium Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature (2007) 447: 661-678	

BRIGHT	British Genetic of Hypertension (BRIGHT) study	Hypertensio n cases	2000	≥ 97%	 heterozygosity <23% or >30%; external discordance; non-European ancestry; duplicate/first/second degree relatives. 	1806	measured	Caulfield M. et al. Genome-wide mapping of human loci for essential hypertension. Lancet.(2003) 361:2118-23.
CAPS1 cases	Cancer Prostate in Sweden 1	Case-control	505	> 95%	 related individuals and duplicates; ethnic outliers; missing body weight and height. 	489	self-reported	Duggan D. et al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst (2007) 99:1836-44
CAPS1 controls	Cancer Prostate in Sweden 1	Case-control	506	> 95%	 related individuals and duplicates; ethnic outliers; missing body weight and height. 	491	self-reported	Duggan D. et al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst (2007) 99:1836-44
CAPS2 cases	Cancer Prostate in Sweden 2	Case-control	1483	> 95%	 related individuals and duplicates; ethnic outliers; missing body weight and height. 	1483	self-reported	Duggan D. et al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst (2007) 99:1836-44.
CAPS2 controls	Cancer Prostate in Sweden 2	Case-control	519	> 95%	 related individuals and duplicates; ethnic outliers; missing body weight and height. 	519	self-reported	Duggan D. et al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst (2007) 99:1836-44
CAD-WTCCC	WTCCC Coronary Arteryt Disease cases	Case series	2000	≥ 97%	 heterozygosity <23% or >30%; discrepancy with external identifying information; ethnic outliers; related individuals and duplicates; 	1879	self reported	The Wellcome Trust Case Control Consortium Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature (2007) 447: 661-678
CHS	Cardiovascular Health Study	Population- based	3232	>95%	 Prevalent clinical CVD African-americans Sex discordant Missing body weight and height 	3228	measured	Fried L.P. et al. The Cardiovascular Health Study: design and rationale. Ann Epidemiol. (1991) 1: 263-276.
CoLaus	Cohorte Lausannoise	Population- based	6188	>90%	 ethnic outliers; related individuals and duplicates; Missing height 	5409	measured	Firmann M. et al. The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome BMC Cardiovascular Disorders (2008) 8:6
deCODE	deCODE genetics sample set	Population- based	38446	≥ 96%	Missing body weight and height.	26799	measured	Thorleifsson G. et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. (2009) 41, 18-24.
DGI cases	Diabetes Genetics Initiative	Case-control	1464	≥ 95%	 Related individuals and duplicates Sex mismatch Phenotype missing 	1317	measured	Saxena R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science (2007) 316:1331-6.
DGI controls	Diabetes Genetics Initiative	Case-control	1467	≥ 95%	 Related individuals and duplicates Sex mismatch Phenotype missing 	1090	measured	Saxena R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science (2007) 316:1331-6
EGCUT	Estonian Genome Center, University of Tartu	Population- based	1428	≥ 95%	 Related individuals and duplicates Sex mismatch Phenotype missing 	1417	measured	 Nelis M. et al. Genetic Structure of Europeans: A View from the North–East. PLoS ONE (2009) 4(5): e5472. Metspalu A. et al. The Estonian Genome Project. Drug Development Research (2004) 62, 97-101.

EPIC-Obesity Study	European Prospective Investigation into Cancer and Nutrition - Obesity Study	Population- based	3821	≥ 94%	 heterozygosity <23% or >30%; >5.0% discordance in SNP pairs with r2= 1 in HapMap; ethnic outliers; related individuals and duplicates; Missing body weight and height. 	3552	measured	 (1) Day N.E. et al. EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. British Journal of Cancer (1999) 80: 95-103. (2) Loos R.J. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet (2008) 40: 768- 775.
ERF (EUROSPAN)	Erasmus Rucphen Family	Family based	2300	> 95%	1)excess heterozygosity based on FDR 2)ehtnic outliers 3)sex mismatch 4)missing phenotype	2060	measured	(1) Aulchenko Y.S. et al. Linkage disequilibrium in young genetically isolated Dutch population. Eur J Hum Genet (2004) 12: 527-534 (2) Axenovich T.I. et al. Linkage analysis of adult height in a large pedigree from a Dutch genetically isolated population. Hum Genet. (2010) 126: 457-71.
Fenland	Fenland Study	Population- based	1500	≥ 95%	1) heterozygosity <27.3% or >28.8%; 2) duplicate check; 3) relatedness check	1402	measured	Willer C.J. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. (2009) 41:25-34
FHS controls	Family Heart Study	Case-control	434	≥ 98%	 technical errors discrepancies between reported sex and sex-diagnostic markers 	415	measured	Higgins M. et al. NHLBI Family Heart Study: objectives and design, Am J Epidemiol (1996) 143, 1219–1228.
FHS cases	Family Heart Study	Case-control	463	≥ 98%	 technical errors discrepancies between reported sex and sex-diagnostic markers 	441	measured	Higgins M. et al. NHLBI Family Heart Study: objectives and design, Am J Epidemiol (1996) 143, 1219–1228.
FRAM	Framingham Heart Study	Population- based, multi- generational	9274	≥ 97%	1) pHWE<1e-6call rate<97% 2) mishap p<1e-9 3) MAF<0.01 4) Mendelian errors>100 5) SNPs not in Hapmap or strandedness issues merging with Hapmap	8089	measured	 Dawber T.R. et al. An approach to longitudinal studies in a community: the Framingham Study. Ann N Y Acad Sci. (1963)107:539-556. Feinleib M. et al. The Framingham Offspring Study. Design and preliminary data. Prev Med. (1975) 4:518-525. Splansky G.L. et al. The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol. (2007) 165:1328-1335.
FTC	Finnish Twin Cohort	Monozygotic twins	152 pairs	≥ 95%	 ethnic outliers; related individuals and duplicates; Missing body weight and body mass index. 	125	measured	(1) Aulchenko Y.S. et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet. (2009) 41:47-55.
FUSION controls	Finland-United States Investigation of NIDDM Genetics	Case-control	1174	> 97.5%	related individuals; missing BMI or height	1167	measured	Scott L.J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science (2007) 316:1341-1345.
FUSION cases	Finland-United States Investigation of NIDDM Genetics	Case-control	1161	> 97.5%	related individuals; missing BMI or height	1082	measured	Scott L.J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science (2007) 316:1341-1345.
GENMETS controls	Health 2000 / GENMETS substudy of Metabolic syndrome	Case-control	948	≥ 95%	 ethnic outliers; related individuals and duplicates; Missing body weight and body mass index. 	823	height calculated using BMI and weight	http://www.terveys2000.fi/indexe.html
GENMETS cases	Health 2000 / GENMETS substudy of Metabolic syndrome	Case-control	932	≥ 95%	 ethnic outliers; related individuals and duplicates; Missing body weight and body mass index. 	824	height calculated using BMI and weight	http://www.terveys2000.fi/indexe.html

GerMiFSI (cases only)	German Myocard Infarct Family Study I	Case-control	875 > 9	7%	1) related individuals and duplicates; 2)missin phenotypes 3) heterozygosity mean +- 3*sd outlier	600	measured	Samani N.J. et al. Genomewide association analysis of coronary artery disease. N Engl J Med.(2007) 357:443-453.
GerMiFSII (cases only)	German Myocard Infarct Family Study II	Case-control	1222 > 97	7%	1) related individuals and duplicates; 2)missin phenotypes 3) heterozygosity mean +- 3*sd outlier	1124	measured	Erdmann J. et al. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet. (2009) 41:280-282.
KORA S3	Cooperative Health Research in the Region of Augsburg, KOoperative Gesundheitsforschu ng in der Region Augsburg	Population- based	1644 ≥ 93	3% 2	1) german passport; 2) missing height.	1643	measured	Wichmann H.E. et al. KORA-genresource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen (2005) 67 Suppl 1, S26-30.
KORA S4	Cooperative Health Research in the Region of Augsburg, KOoperative Gesundheitsforschu ng in der Region Augsburg	Population- based	1814 ≥ 93	3% 2	1) german passport; 2) missing height.	1811	measured	Wichmann H.E. et al. KORA-genresource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen (2005) 67 Suppl 1, S26-30.
MICROS	MICROS (EUROSPAN)	Population- based	1098 ≥ 97	7%	1) ethnic outliers; 2) duplicates; 3) Missing height.	1079	measured	Pattaro C. et al. The genetic study of three population microisolates in South Tyrol (MICROS): study design and epidemiological perspectives. BMC Med Genet (2007) 8:29
MIGEN	Myocardial Infarction Genetics Consortium	Case-control	6042 ≥ 98	5%	1) Related individuals and duplicates 2) Sex mismatch 3) Phenotype missing	2652	measured	Kathiresan S. et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. (2009) 41:334-41.
NBS-WTCCC	WTCCC National Blood Service donors	Population- based	1500 ≥ 97	7% 2 i 2	1) heterozygosity <23% or >30%; 2) discrepancy with external identifying information; 3) ethnic outliers; 4) related individuals and duplicates;	1441	self reported	The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature (2007) 447, 661-678
NFBC1966	Northern Finland Birth Cohort 1966	Population- based	5654 ≥ 9!	5% (r 2 2	 gender discrepancy with genetic data from X-linked markers; withdrawn consent; duplicates and first and second degree relatives; contaminated samples 	4499	measured	 (1) Sabatti C. et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet (2008) 41: 35-46. (2) Sovio U. et al. Genetic determinants of height growth assessed longitudinally from infancy to adulthood in the northern Finland birth cohort 1966. PLoS Genet (2009) 5(3): e1000409
NHS	The Nurses' Health Study	Nested case-control	2368 >90)% (2 2	1) Low genotying completion (<90%); 2) Unclear identity and admixed origin; 3) Missing height.	2265	self-reported	Hunter D. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. (2007) 39: 870-874.

NSPHS	Northern Sweden Population Health Study (EUROSPAN)	Population- based	720	≥ 97%	1) ethnic outliers; 2) duplicates; 3) Missing height.	652	measured	 Johansson A. et al. Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis. Hum Mol Genet (2009) 18: 373-80. Hicks A.A. et al. Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet. (2009) 5(10):e1000672
NTRNESDA	Netherlands Twin Register & the Netherlands Study of Depression and Anxiety	Case-control	3720	≥ 95%	 evidence of sample contamination (heterozygosity); ethnic outliers; related individuals and duplicates; missing body height. 	3522	questionnaire and measured	 Boomsma D.I. et al. Netherlands Twin Register: from twins to twin families. Twin Res Hum Genet (2006) 9: 849–857. Penninx B. et al. The Netherlands Study of Depression and Anxiety (NESDA): rationales, objectives and methods. Int J Methods Psychiatr Res (2008) 17: 121-140. Boomsma D.I. et al. Genome-wide association of major depression: Description of samples for the GAIN major depressive disorder study: NTR and NESDA Biobank Projects. Eur J Hum Genet (2008) 16: 335–342.
ORCADES	Orkney Complex Disease Study (part of EUROSPAN)	Population- based	719	≥ 97%	1) ethnic outliers; 2) duplicates; 3) missing height.	695	measured	 Johansson A. et al. Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis. Hum Mol Genet. (2009) 18: 373-380. Hicks A.A. et al. Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet. (2009) 5(10):e1000672
PLCO	The Prostate, Lung Colorectal and Ovarian Cancer Screening Trial	Case-control	2298	≥ 94%	 Gender discordance Non-European ancestry Related individuals and duplicates; Missing height. 	2244	self-reported	Yeager M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet (2007) 39: 645-649.
PROCARDIS	Precocious Coronary Artery Disease	Case-control	2573	> 95%	none	2312	measured	Broadbent H.M. et al. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet (2008) 17: 806-814.
RS-I	Rotterdam Study I	Population- based	7983	≥ 97.5%	 gender mismatch with typed X- linked markers; excess autosomal heterozygosity > 0.336~FDR>0.1%; duplicates and/or 1st or 2nd degree relatives using IBS probabilities >97% from PLINK; ethnic outliers using IBS distances > 3SD from PLINK; Missing body weight and height. 	5744	measured	 (1) Estrada K. et al. A genome-wide association study of northwestern Europeans involves the C-type natriuretic peptide signaling pathway in the etiology of human height variation. Hum Mol Genet (2009) 18:3516-3524 (2) Estrada K. et al. GRIMP: a web- and grid-based tool for high- speed analysis of large-scale genome-wide association using imputed data. Bioinformatics (2009) 25:2750-2752 (3) Hofman A. et al. The Rotterdam Study: 2010 objectives and design update. Eur J Epidemiol (2009) 24: 553-572 (4) Hofman A. et al. Determinants of disease and disability in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol (1991) 7: 403-422
RUNMC	Nijmegen Bladder Cancer Study (NBCS) & Nijmegen Biomedical Study (NBS), Radboud University Nijmegen Medical Centre	Population- based	3081	≥ 96%	Missing body weight and height.	2873	self-assessed and reported by questionnaire	 Wetzels J.F. et al. Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. Kidney Int (2007) 72, 632-637. Kiemeney L.A. et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet (2008) 40: 1307- 1312.
SardiNIA	SARDINIA	Population- based	6148	≥ 90%	1) Morquio syndrome 2) Missing height	4298	measured	Pilia G. et al. Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet (2006) 2: e132

SASBAC cases	Swedish And Singapore Breast Association Consortium	Case-control	803	≥ 96%	 related individuals and duplicates; ethnic outliers; missing body weight and height. 	794	self-reported	 Magnusson C. et al. Breast-cancer risk following long-term oestrogen- and oestrogen-progestin-replacement therapy. Int J Cancer (1999) 81: 339-344. Einarsdóttir K. et al. Comprehensive analysis of the ATM, CHEK2 and ERBB2 genes in relation to breast tumour characteristics and survival: a population-based case-control and follow-up study. Breast Cancer Res (2006) 8: R67.
SASBAC controls	Swedish And Singapore Breast Association Consortium	Case-control	764	≥ 96%	 related individuals and duplicates; ethnic outliers; missing body weight and height. 	758	self-reported	 Magnusson C. et al. Breast-cancer risk following long-term oestrogen- and oestrogen-progestin-replacement therapy. Int J Cancer (1999) 81: 339-344. Einarsdóttir K. et al. Comprehensive analysis of the ATM, CHEK2 and ERBB2 genes in relation to breast tumour characteristics and survival: a population-based case-control and follow-up study. Breast Cancer Res (2006) 8: R67.
SEARCH / UKOPS	Studies of Epidemiology and Risk factors in Cancer Heredity / UK Ovarian Cancer Population Study	Population- based	1710	≥ 80%	 ethnic outliers duplicates Missing height 	1592	self-assessed	Song H. et al. A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. Nat Genet (2009) 41: 996-1000.
SHIP	Study of Health in Pomerania	Population- based	4310	≥ 92%	1) missing genotype or phenotype data	4092	measured	John U. et al. Study of health in Pomerania (SHIP): a health examination survey in an east German region: objectives and design. Soz-Präventivmed (2001) 46: 186-194.
T2D-WTCCC	WTCCC Type 2 Diabetes cases	case series	1999	≥ 97%	 heterozygosity <23% or >30%; discrepancy with external identifying information; ethnic outliers; related individuals and duplicates; 	1903	measured	The Wellcome Trust Case Control Consortium Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature (2007) 447: 661-678
TwinsUK	TwinsUK	Twins pairs	2226	≥ 95%	 heterozygosity <33% or >37%; ethnic outliers; related individuals and duplicates; Missing body weight and height. 	1479	measured	 (1) Spector T.D., Williams F.M. The UK Adult Twin Registry (TwinsUK). Twin Res Hum Genet (2006) 9: 899-906. (2) Spector T.D., MacGregor A.J. The St. Thomas' UK Adult Twin Registry. Twin Res (2002) 5: 440-443.
VIS	VIS (EUROSPAN) and KORCULA	Population- based	795	≥ 97%	1) ethnic outliers; 2) duplicates; 3) Missing height.	784	measured	 Johansson A. et al. Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis. Hum Mol Genet. (2009) 18: 373-380. Hicks A.A. et al. Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet. (2009) 5(10):e1000672
Stage 2 (in-s	ilico replication	studies)						
BHS	Busselton Health Study	Population- based	1366	≥ 75%	 ethnic outliers; related individuals and duplicates; Missing body waist and hip. 	1328	measured	 James A.L. et al. Decline in lung function in the Busselton Health Study: the effects of asthma and cigarette smoking. Am J Respir Crit Care Med (2005) 171:109-114. Hui J. et al. A genome-wide association scan for asthma in a general Australian population. Hum Genet (2008) 123:297-306

Corogene	Genetic Predisposition of Coronary Heart Disease in Patients Verified with Coronary Angiogram	Population- based	4130	≥ 95%	 missing gender related individuals and duplicates (For this specific analysis) Missing body height 	3758	measured	Soranzo, N. et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat. Genet (2009). 41: 1182-1190.
EGCUT	Estonian Genome Center, University of Tartu	Population- based	345	≥ 95%	1) Related individuals and duplicates 2) Sex mismatch 3) Phenotype missing	345	measured	 Nelis M. et al. Genetic Structure of Europeans: A View from the North–East. PLoS ONE (2009) 4(5): e5472. Metspalu A. The Estonian Genome Project. Drug Development Research (2004) 62: 97-101.
FHS	Family Heart Study	Case-control	1808	≥ 98%	 technical errors discrepancies between reported sex and sex-diagnostic markers 	1463	measured	Higgins M. et al. NHLBI Family Heart Study: objectives and design, Am J Epidemiol (1996) 143: 1219-1228.
FINGESTURE cases	Finnish Genetic Study of Arrhythmic Events	Disease cohort (MI cases only)	1103	≥ 97%	 PLINK heterozygosity F-value -0.05 or >0.05; ethnic outliers; related individuals and duplicates; Missing body weight and height. 	943	measured	Kaikkonen K.S. et al. Family history and the risk of sudden cardiac death as a manifestation of an acute coronary event. Circulation (2006) 114, 1462-7
GOOD	Gothenburg Osteoporosis and Obesity Determinants Study	Population- based	1056	≥ 97.5%	 heterozygosity > 33%; ethnic outliers; related individuals and duplicates. 	938	measured	Lorentzon M. et al. Free testosterone is a positive whereas free estradiol is a negative predictor of cortical bone size in young Swedish men-The GOOD Study. J Bone Miner Res (2005) 20: 1334-1341.
HBCS	Helsinki Birth Cohort Study	Birth cohort study	1872	≥ 95%	1) related individuals and duplicates 2) (From this specific analysis) Missing body height	1726	measured	Ylihärsilä H. et al. Body mass index during childhood and adult body composition in men and women aged 56-70 y. Am J Clin Nutr. (2008) 87:1769-1775. Kajantie E. et al. Size at birth as a predictor of mortality in adulthood: a follow-up of 350 000 person-years. Int J Epidemiol (2005) 34:655-663.
HYPERGENES controls	HYPERGENES	Case-control	1934	>90%	 ethnic outliers Missing body weight and height. 	1838	measured	http://www.hypergenes.eu/
HYPERGENES cases	HYPERGENES	Case-control	2124	>90%	 ethnic outliers Missing body weight and height. 	1787	measured	http://www.hypergenes.eu/
MGS	Molecular Genetics of Schizophrenia/NIM H Repository Control Sample	Population- based (survey research method)	2681	99.7%	 call rate < 97% for samples,95% for SNPs heterozygosity <26% or >28.5%; excess duplicate discordancies or mendelian errors (SNPs); ethnic outliers (principal component scores); related individuals and duplicates; Missing body weight or height. 	2597	self-reported	 Shi J. et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. (2009) 460: 753-757. Sanders A.R. et al. No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am J Psychiatry. (2008) 165: 497-506.
NHS	The Nurses' Health Study	Nested case-control	3221	>98%	1) Low genotying completion (<98%); 2) Unclear identity and admixed origin; 3) related individuals and duplicates; 4) DNA contamination; 5) Missing height;	3217	self-reported	Qi L. et al. Genetic variants in ABO blood group region, plasma soluble E-selectin levels, and risk of type 2 diabetes. Hum Mol Genet. (2010) Feb 10, doi:10.1093/hmg/ddq057

RS-II	Rotterdam Study II	Population- based	3011	≥ 97.5%	 gender mismatch with typed X- linked markers; excess autosomal heterozygosity (F<-0.055); duplicates and/or 1st degree relatives using IBD PiHAT >40% from PLINK; ethnic outliers IBS distances > 4SD mean HaMAP CEU cluster from PLINK; Missing body weight and height. 	2124	measured	 (1) Estrada K. et al. A genome-wide association study of northwestern Europeans involves the C-type natriuretic peptide signaling pathway in the etiology of human height variation. Hum Mol Genet (2009) 18:3516-3524 (2) Estrada K. et al. GRIMP: a web- and grid-based tool for high- speed analysis of large-scale genome-wide association using imputed data. Bioinformatics (2009) 25:2750-2752 (3) Hofman A. et al. The Rotterdam Study: 2010 objectives and design update. Eur J Epidemiol (2009) 24: 553-572 (4) Hofman A. et al. Determinants of disease and disability in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol (1991) 7:
RS-III	Rotterdam Study III	Population- based	3932	≥ 97.5%	 gender mismatch with typed X- linked markers; excess autosomal heterozygosity (F<-0.055); duplicates and/or 1st degree relatives using IBD PiHAT >40% from PLINK; thnic outliers IBS distances > 4SD mean HaMAP CEU cluster from PLINK; Missing body weight and height. 	2009	measured	 (1) Estrada K. et al. A genome-wide association study of northwestern Europeans involves the C-type natriuretic peptide signaling pathway in the etiology of human height variation. Hum Mol Genet (2009) 18:3516-3524 (2) Estrada K. et al. GRIMP: a web- and grid-based tool for high- speed analysis of large-scale genome-wide association using imputed data. Bioinformatics (2009) 25:2750-2752 (3) Hofman A. et al. The Rotterdam Study: 2010 objectives and design update. Eur J Epidemiol (2009) 24: 553-572 (4) Hofman A. et al. Determinants of disease and disability in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol (1991) 7: 403-422
Sorbs	Sorbs are self- contained population from Eastern Germany, European Descent	Population- based	1097	≥ 94%	 gender mismatch; ethnic outliers; duplicates; Missing body weight and height. 	907	measured	Tönjes A. et al. Association of FTO variants with BMI and fat mass in the self-contained population of Sorbs in Germany. Eur J Hum Genet. (2010) 18:104-10.
WGHS	Women's Genome Health Study	Population- based	23,294	>98%	 includes only WGHS participants with confirmed, self- reported European ancestry; all SNPs have HWE p>10E-6; all SNPs have genotype for >90% samples only samples with biometric measures included in analysis 	23099	self-report	Ridker P.M. et al. Rationale, design, and methodology of the Women's Genome Health Study: a genome-wide association study of more than 25,000 initially healthy American women. Clin Chem. (2008) 54:249-55.
YFS	The Cardiovascular Risk in Young Finns Study	Population- based cohort	2,443	≥ 95%	 missing gender related individuals and duplicates (From this specific analysis) Missing body height 	1995	measured	Raitakari O.T. et al. Cohort profile: The cardiovascular risk in Young Finns Study. Int J Epidemiol. (2008) 37:1220-6
Polygene an	alysis study							
QIMR	Twin studies at the Queensland Instutite of Medical Research	Population- based	2,654	≥ 95%	 close relatives based on pedigree information; ethnic outliers; Missing height. 	1475	measured or self-report	Medland et al. Common Variants in the Trichohyalin Gene Are Associated with Straight Hair in Europeans. Amer J Hum Genet (2009) 85:750-5.
* Sample genoty	ping success rate; i.e.	minimum perce	entage of suc	ccessfully (genotyped SNPs of GWAs per sample	9		·

Supplementa	ary Methods Table	2. Information o	n gen	otyping n	nethods, c	quality co	ntrol of SN	IPs, in	nputation, and sta	atistical analys	is.			
		Genot	yping					Impu	utation		Assoc	iation a	nalyses	
	Diotform	Genotype calling algorithm		Inclusion criteria		SNPs that	Imputation	I	nclusion criteria	SNPs in meta-		I _{GC}		Analyses
Cohort	T lation in		MAF	Call rate*	p for HWE	criteria	software	MAF	Imputation quality	MAFxN>3 filter)	all	men	women	software
Stage 1 (GW)	A studies)													
ADVANCE cases	Illumina 550k	BeadStudio	none	≥98.5%	>10 ⁻³	543,985	BIMBAM	>0%	none	2,193,902	NA	1.047	1.022	SNPTEST
ADVANCE controls	Illumina 550k	BeadStudio	none	≥98.5%	>10 ⁻³	543,985	BIMBAM	>0%	none	2,206,332	NA	1.046	0.996	SNPTEST
AGES	Illumina Human370CNV	BeadStudio	≥1%	≥95%	>10 ⁻⁶	308,340	MACH	>0%	r2-hat≥0.30	2,458,927	NA	1.075	1.082	ProbABEL
Amish HAPI Heart Study	Affymetrix GeneChip Human Mapping 500K	BRLMM	≥1%	≥95%	>10 ⁻⁶	338,598	MACH	>0%	r2-hat≥0.30	2,291,092	1.057	0.938	1.045	MMAP
ARIC	Affymetrix Genome- Wide Human SNP Array 6.0	Birdseed	>1%	≥95%	>10 ⁻⁵	685,812	MACH	>0%	r2-hat≥0.30	2,511,301	NA	1.021	1.039	ProbABEL
B58C-T1DGC	Illumina HumanHap 550 V.1	ILLUMINUS	>0%	none	none	539,458	MACH	>0%	r2-hat≥0.30	2,507,988	NA	1.024	1.014	ProbABEL
B58C-WTCCC	Affymetrix GeneChip Human Mapping 500K	CHIAMO	>5%	none	none	392,575	IMPUTE	>0%	proper-info≥0.40	2,448,428	NA	0.999	1.003	SNPTEST
BRIGHT	Affymetrix GeneChip Human Mapping 500K	CHIAMO	≥5%	≥95%	>10 ⁻⁶	387,666	IMPUTE	>0%	proper-info≥0.40	2,429,136	NA	1.015	0.995	SNPTEST
CAPS1 cases	Affymetrix GeneChip Human Mapping 500K	BRLMM	≥1%	≥95%	>10 ⁻⁷	330,124	IMPUTE	>0%	proper-info≥0.40	2,387,578	NA	0.993	NA	SNPTEST
CAPS1 controls	Affymetrix GeneChip Human Mapping 500K	BRLMM	≥1%	≥95%	>10 ⁻⁷	330,124	IMPUTE	>0%	proper-info≥0.40	2,390,475	NA	0.995	NA	SNPTEST
CAPS2 cases	Affymetrix GeneChip Human Mapping 5.0K	BLRMM-P	≥1%	≥95%	>10 ⁻⁷	348,163	IMPUTE	>0%	proper-info≥0.40	2,416,296	NA	1.044	NA	SNPTEST
CAPS2 controls	Affymetrix GeneChip Human Mapping 5.0K	BLRMM-P	≥1%	≥95%	>10 ⁻⁷	348,163	IMPUTE	>0%	proper-info≥0.40	2,391,556	NA	1.041	NA	SNPTEST
CAD-WTCCC	Affymetrix GeneChip Human Mapping 500K	CHIAMO	>5%	≥95%	>10 ⁻⁶	387,667	IMPUTE	>0%	proper-info≥0.40	2,430,482	NA	1.025	1.009	SNPTEST
CHS	Illumina 370-CNV	BeadStudio		>97%	>10 ⁻⁵	306,655	BimBam	>0%	r2-hat ≥0.30	2,191,645	NA	1.11	1.15	R
CoLaus	Affymetrix GeneChip Human Mapping 500K	BRLMM	≥1%	≥70%	>10 ⁻⁷	390,631	IMPUTE	>0%	proper-info ≥0.40	2,479,491	NA	1.013	1.034	QUICKTEST
deCODE	Illumina HumanHap300 or HumanHapCNV370	BeadStudio	≥1%	≥96%	>10 ⁻⁶	290,447	IMPUTE	>0%	proper-info≥0.40	2,456,118	0.948	0.977	0.986	SNPTEST
DGI cases	Affymetrix 500K	BRLMM	≥1%	≥95%	>10 ⁻⁶	386,731	MACH	>0%	r2-hat≥0.30	2,410,247	1.029	0.977	1.049	MACH2QTL

DGI controls	Affymetrix 500K	BRLMM	≥1%	≥95%	>10 ⁻⁶	386,731	MACH	>0%	r2-hat≥0.30	2,408,993	1.029	1.045	0.995	MACH2QTL
EGCUT	Illumina Beadarray Human370CNV	BeadStudio	≥1%	≥98%	>10 ⁻⁶	299,484	IMPUTE	>0%	proper-info≥0.40	2,429,620	NA	1.032	1.013	SNPTEST
EPIC-Obesity Study	Affymetrix GeneChip Human Mapping 500K	BRLMM	≥1%	≥90%	>10 ⁻⁶	397,438	IMPUTE	>0%	proper-info≥0.40	2,420,624	NA	1.018	1.027	SNPTEST
ERF (EUROSPAN)	Illumina 318K, 370K, Affymetrix 250K	BRLMM, BeadStudio	>0.5%	>95%	>10 ⁻⁶	NA	MACH	>0%	r2-hat≥0.30	2,463,846	1.031	1.012	1.019	ProbABEL
Fenland	Affymetrix SNP5.0	BRLMM	≥1%	≥90%	>10 ⁻⁶	362,055	IMPUTE	>0%	proper-info≥0.40	2,406,753	NA	1.039	1.04	SNPTEST
FHS (cases + controls)	Illumina 1Million GeneChip	BeadStudio	≥1%	≥98%	>10 ⁻⁶	874,830	MACH	>0%	r2-hat≥0.30	2,375,010	1.066	1.06	1.064	SAS
FRAM	Affymetrix 500K Affymetrix 50K supplemental	BRLMM	≥1%	≥97%	>10 ⁻⁶	378,163	MACH	>0%	r2-hat≥0.30	2,455,455	1.071	1.027	1.062	R
FTC	Illumina HumanHap 318K	BeadStudio	≥1%	≥90%	>10 ⁻⁶	304,582	MACH	>0%	r2-hat≥0.30	2,268,674	NA	NA	1.005	ProbABEL
FUSION controls	Illumina Infinium™ II HumanHap300 BeadChip	BeadStudio	>1%	≥90%	≥10 ⁻⁶	315,635	MACH	>0%	r2-hat≥0.30	2,466,546	1.112	1.056	1.074	MACH2QTL
FUSION cases	Illumina Infinium™ II HumanHap300 BeadChip	BeadStudio	>1%	≥90%	≥10 ⁻⁶	315,635	MACH	>0%	r2-hat≥0.30	2,466,546	1.08	1.077	1.027	MACH2QTL
GENMETS controls	Illumina HumanHap 610K	Illuminus	≥1%	≥95%	>10 ⁻⁶	555,388	MACH	>0%	r2-hat≥0.30	2,345,066	NA	1.043	1.006	ProbABEL
GENMETS cases	Illumina HumanHap 610K	Illuminus	≥1%	≥95%	>10 ⁻⁶	555,388	MACH	>0%	r2-hat≥0.30	2,343,751	NA	1.016	1.007	ProbABEL
GerMiFSI	Affymetrix NSP/STY	BRLMM	>1%	>97%	>10 ⁻⁵	282,215	MACH	>0%	r2-hat≥0.30	2,333,219	NA	1.014	1.026	GenABEL
GerMiFSII	Affymetrix 6.0	Birdseed	>1%	>97%	>10 ⁻⁵	653,149	MACH	>0%	r2-hat≥0.30	2,492,325	NA	1.07	1.015	GenABEL
KORA S3	Affymetrix 500K	BRLMM	none	none	none	490,032	MACH	>0%	r2-hat≥0.30	2,415,072	NA	1.018	1.016	MACH2QTL
KORA S4	Affymetrix 6.0	Birdseed	none	none	none	909,622	IMPUTE	>0%	proper-info≥0.40	2,109,266	NA	1.009	1.036	SNPTEST
MICROS	ILLUMINA318K	BeadStudio	≥1%	≥98%	>10 ⁻⁶	318,237	MACH	>0%	r2-hat ≥0.30	2,435,539	1.004	1	0.994	ProbABEL
MIGEN	Affymetrix 6.0	Birdseed	≥1%	≥95%	>10 ⁻⁶	727,496	MACH	>0%	r2-hat ≥0.30	2,288,269.4 (average)	NA	1.002 (average)	1.0015 (average)	MACH2QTL
NBS-WTCCC	Affymetrix GeneChip Human Mapping 500K	CHIAMO	>5%	≥95%	>10 ⁻⁶	387,667	IMPUTE	>0%	proper-info ≥0.40	2,415,926	NA	1.002	1.008	SNPTEST
NFBC1966	Illumina HumanCNV- 370DUO Analysis BeadChip	Standard Illumina BeadStudio	≥5%	≥95%	>10 ⁻⁴	328,007	IMPUTE	>0%	proper-info ≥0.40	2,460,379	NA	1.037	1.053	SNPTEST
NHS	Illumina HumanHap550	Standard Illumina BeadStudio	≥1%	≥90%	none	510,073	MACH	>0%	r2-hat ≥0.30	2,520,546	NA	NA	1.005	MACH2QTL
NSPHS	ILLUMINA318K	BeadStudio	≥1%	≥98%	>10 ⁻⁶	318,236	MACH	>0%	r2-hat≥0.30	2,382,373	1.023	1.03	1.015	ProbABEL

NTRNESDA	Perlegen - Affymetrix gene chip 600K	Proprietary Perlegen	>1%	≥95%	none	435,291	IMPUTE	>0%	proper-info≥0.40	2,493,317	NA	1.028	1.062	SNPTEST
ORCADES	ILLUMINA318K	BeadStudio	≥1%	≥98%	>10 ⁻⁶	318,235	MACH	>0%	r2-hat≥0.30	2,433,999	1.004	0.966	1.042	ProbABEL
PLCO	Illumina HumanHap300 and Illumina HumanHap240	Illumina Bead Studio	none	≥90%	none	523,231	MACH	>0%	r2-hat≥0.30	2,527,780	NA	1.006	NA	MACH2QTL
PROCARDIS	HumanHap300 BeadChips	Illumina Beadstudio 2.0 software	>5%	≥95%	>5x10 ⁻⁷	~820k	IMPUTE	>0%	proper-info≥0.40	2,580,770	NA	1.084	1.014	SNPTEST
RS-I	Illumina /HumanHap 550K V.3 ADHumanHap 550 V.3 DUO;	BeadStudio Genecall	≥1%	≥97.5%	>10 ⁻⁶	512,349	MACH	>0%	(O/E)σ2 ratio≥0.1 r2-hat≥0.30	2,488,215	NA	1.045	1.064	MACH2QTL
RUNMC	Illumina HumanHapCNV370	BeadStudio	≥1%	≥96%	>10 ⁻⁶	312,199	IMPUTE	>0%	proper-info≥0.40	2,465,662	0.996	0.996	0.996	SNPTEST
SardiNIA	Affymetrix 500K and Affymetrix 10K	BRLMM	≥5%	≥90%	>10 ⁻⁶	356,359	MACH	>0%	r2-hat≥0.30	2,251,689	1.313	1.171	1.213	Merlin
SASBAC cases	Illumina HumanHap300+240S	Standard Illumina BeadStudio (GenCall)	≥3%	≥90%	>10 ⁻⁷	510,578	IMPUTE	>0%	proper-info≥0.40	2,491,965	NA	NA	1.009	SNPTEST
SASBAC controls	Illumina HumanHap550	Standard Illumina BeadStudio (GenCall)	≥3%	≥90%	>10 ⁻⁷	512,223	IMPUTE	>0%	proper-info≥0.40	2,474,508	NA	NA	1.012	SNPTEST
SEARCH / UKOPS	Illumina HumanHap 610 Quad	Illuminus	≥1%	≥95%	>10 ⁻⁴	495,229	In-house method similar to IMPUTE	>0%	r2-hat≥0.30	2,486,650	NA	NA	1.02	Regression analysis on dosages
SHIP	Affymetrix Human SNP Array 6.0	Birdseed V2	≥0%	≥0%	≥0	869,224	IMPUTE	>0%	proper-info≥0.40	2,609,015	NA	1.034	1.046	SNPTEST v1.1.5 InforSense
T2D-WTCCC	Affymetrix GeneChip Human Mapping 500K	CHIAMO	>5%	≥95%	>10 ⁻⁶	387,667	IMPUTE	>0%	proper-info≥0.40	2,425,374	NA	1.008	1.011	SNPTEST
TWINSUK	Illumina / HumanHap 300 & 550	Illuminus	≥1%	≥95%	>10 ⁻⁶	295,702	IMPUTE	>0%	proper-info≥0.40	2,460,943	NA	NA	1.022	SNPTEST
VIS	Illumina HumanHap300v1	BeadStudio	≥1%	≥98%	>10 ⁻⁶	317,465	MACH	>0%	r2-hat≥0.30	2,423,083	0.989	1.002	0.991	ProbABEL
Stage 2 (in-si	ilico replication stu	ıdies)												
BHS	Illumina Human 610- Quad	Illuminus	≥1%	≥95%	>5.7x10 ⁻⁷	549,294	MACH	≥1%	r2-hat≥0.30	664	-	-	-	R
Corogene	Illumina BeadChip Human 610-Quad	Illuminus	≥1%	≥95%	>10 ⁻⁶	554,988	MACH	≥1%	r2-hat≥0.30	663	-	1.079	1.084	PLINK
EGCUT	Illumina Beadarray Human370CNV	BeadStudio	≥1%	≥98%	>10 ⁻⁶	316,924	IMPUTE	≥1%	proper-info≥0.30	662	-	1.034	1.025	SNPtest
FHS	Illumina 1Million GeneChip	BeadStudio	≥1%	≥98%	>10 ⁻⁶	874,830	MACH	≥1%	r2-hat≥0.30	665	-	-	-	SAS
------------------------	---	---	--------	--------------	-------------------	--	--------	-----	-----------------------------------	-----	---	-------	-------	--------------------------------
FINGESTURE cases	Affymetrix Genome- Wide Human SNP Array 6.0	Birdseed	≥5%	≥95%	>10 ⁻⁶	606,717	MACH	>0%	r2-hat≥0.30	663	-	-	-	MACH2QTL
GOOD	Illumina Infinium HumanHap 610K	BeadStudio	≥1%	≥98%	>10 ⁻⁶	521,160	MACH	>0%	r2-hat≥0.30	664	-	-	-	MACH2QTL
HBCS	Illumina custom made BeadChip Human 670- Quad	Illuminus	≥1%	≥95%	>10 ⁻⁶	533491	MACH	≥1%	r2-hat≥0.30	663	-	1.000	1.002	PLINK
HYPERGENES controls	Illumina Human1M- Duov3_B	GenCall, BeadStudio	≥1%	≥90%	>10 ⁻⁷	Center I: 861759, Center II: 872576	MACH	>0%	r2-hat≥0.30	642	-	-	-	Matlab
HYPERGENES cases	Illumina Human1M- Duov3_B	GenCall, BeadStudio	≥1%	≥90%	>10 ⁻⁷	Center I: 861759, Center II: 872576	MACH	>0%	r2-hat≥0.30	642	-	-	-	Matlab
MGS	Affymetrix Genome- Wide Human SNP Array 6.0	Birdsuite 2.0	≥1%	≥95%	>10 ⁻⁶	696,492	MACH	≥1%	r2-hat≥0.30	662	-	-	-	PLINK and local software
NHS	Affymetrix Genome- Wide Human 6.0 array	Birdseed calling algorithm v2	≥2%	≥98%	>10 ⁻⁴	704,409	MACH	≥2%	r2-hat≥0.30	392	-	-	-	ProbABEL
RS-II	Illumina / HumanHap 550 V.3 DUO; Illumina / HumanHap 610 QUAD	Genomestudio Genecall	≥1%	≥97.5%	>10 ⁻⁶	466,389	MACH	≥1%	(O/E)σ2 ratio≥0.1 r2-hat ≥0.30	664	-	1.004	1.012	MACH2QTL
RS-III	Illumina / HumanHap 610 QUAD	Genomestudio Genecall	≥1%	≥97.5%	>10 ⁻⁶	514,073	MACH	≥1%	(O/E)σ2 ratio≥0.1 r2-hat ≥0.30	664	-	1.004	1.018	MACH2QTL
Sorbs	500K Affymetrix GeneChip (250K Sty and 250K Nsp arrays) and Affymetrix Genome-Wide Human SNP Array 6.0	BRLMM algorithm for 500K and Birdseed Algorithm for SNP Array 6.0	≥1%	≥95%	>10 ⁻⁴	378,513	IMPUTE	>1%	proper-info>0.40	650	-	-	-	SNPTEST
WGHS	Illumina HumanHap300 Duo "+"	Beadstudio v 3.3	NA	≥90%	>10 ⁻⁶	339,596	MACH	>0%	r2-hat≥0.30	663	-	-	-	R
YFS	Illumina custom made BeadChip Human 670- Quad	Illuminus	≥1%	≥95%	>10 ⁻⁶	546,674	MACH	≥1%	r2-hat≥0.30	663	-	1.017	1.043	PLINK
Polygene and	alysis study													
QIMR	Illumina HumanHap 610 Quad	BeadStudio	≥1%	≥95%	>10 ⁻⁶	493,578								
* SNP genotyping	g success rate; i.e. minim	um percentage of s	uccess	fully genoty	oed sample	es per SNP								

Supplementary	Methods T	able 3:	Study-s	pecific	descripti	ve stat	istics										
						Men								Wome	n		
Study	Trait	n	mean	SD	median	min	max	correlation with BMI	correlation with height	n	mean	SD	median	min	max	correlation with BMI	correlation with height
Stage 1 (GWA s	studies)																
ADVANCE cases	Age (yrs)	114	40.42	3.98	41.20	20.40	45.10	-0.10	-0.12	161	49.46	4.68	50.50	34.00	55.00	0.01	-0.15
	Height (m)	114	1.77	0.07	1.77	1.61	1.95	0.15	1.00	161	1.64	0.07	1.64	1.48	1.84	-0.14	1.00
	BMI (kg/m²)	114	31.39	5.77	30.89	19.48	54.32	1.00	0.15	161	31.40	8.17	30.65	17.30	61.08	1.00	-0.14
	Weight (kg)	114	99.03	21.16	97.59	64.05	181.44	0.92	0.49	161	83.98	21.78	81.74	48.58	153.00	0.95	0.16
ADVANCE controls	Age (yrs)	128	40.46	3.23	41.20	33.40	46.80	-0.03	0.15	183	48.69	4.45	49.80	34.80	55.40	0.09	-0.03
	Height (m)	128	1.79	0.07	1.78	1.58	1.96	0.02	1.00	181	1.66	0.06	1.66	1.45	1.80	-0.14	1.00
	BMI (kg/m²)	128	27.00	4.48	26.21	17.86	49.38	1.00	0.02	181	26.08	6.36	24.65	15.76	54.12	1.00	-0.14
	Weight (kg)	128	86.45	16.38	84.37	51.48	158.76	0.88	0.43	182	71.35	17.13	68.27	40.23	140.71	0.92	0.21
AGES Midlife	Age (yrs)	1352	49.69	5.87	50.00	34.00	75.00	0.05	-0.21	1867	52.00	6.54	52.00	34.00	77.00	0.15	-0.23
	Height (m)	1352	1.78	0.06	1.78	1.56	1.98	0.01	1.00	1867	1.64	0.05	1.64	1.45	1.83	-0.15	1.00
	BMI (kg/m²)	1351	25.62	3.09	25.48	16.94	38.61	1.00	0.01	1856	24.89	3.81	24.31	13.65	50.41	1.00	-0.15
	Weight (kg)	1351	81.32	11.41	80.40	51.00	139.00	0.87	0.51	1856	67.13	10.51	66.00	32.80	140.60	0.91	0.27
Amish HAPI Heart	Age (yrs)	471	46.2	16.9	43.0	20.0	99.0	0.25	-0.41	437	47.5	15.1	48.0	20.0	95.0	0.25	-0.40
Study	Height (m)	470	1.73	0.07	1.73	1.48	1.94	-0.05	1.00	437	1.61	0.06	1.61	1.39	1.75	-0.22	1.00
	BMI (kg/m²)	468	26.3	3.5	26.0	18.6	39.0	1.00	-0.05	437	28.5	5.7	28.3	16.9	47.1	1.00	-0.22
	Weight (kg)	468	78.6	11.7	77.0	49.4	112.8	0.86	0.45	437	73.5	14.4	71.9	37.8	114.3	0.93	0.16
ARIC	Age (yrs)	3823	54.69	5.70	55.00	44.00	66.00	-0.04	-0.16	4287	53.97	5.67	54.00	44.00	66.00	0.04	-0.15
	Height (m)	3823	1.76	0.06	1.76	1.49	1.99	-0.03	1.00	4287	1.62	0.06	1.62	1.37	1.87	-0.08	1.00
	BMI (kg/m²)	3822	27.48	4.01	26.97	17.21	56.26	1.00	-0.03	4286	26.63	5.52	25.45	14.38	55.20	1.00	-0.08
	Weight (kg)	3822	85.54	13.76	84.09	44.55	182.27	0.89	0.43	4286	70.00	14.99	66.82	36.36	141.82	0.94	0.26
B58C-T1DGC	Age (yrs)	1259	45.31	0.34	45.33	44.50	46.00	-0.02	-0.05	1328	45.27	0.34	45.25	44.50	46.00	0.00	-0.04
	Height (m)	1261	1.76	0.07	1.76	1.55	1.99	-0.03	1.00	1330	1.63	0.06	1.63	1.40	1.85	-0.07	1.00
	BMI (kg/m²)	1259	28.02	4.19	27.56	16.84	51.63	1.00	-0.03	1328	26.97	5.58	25.73	17.18	52.20	1.00	-0.07
	Weight (kg)	1259	87.05	14.41	86.00	50.80	177.10	0.89	0.43	1328	71.63	15.45	68.40	43.00	155.30	0.93	0.29
B58C-WTCCC	Age (yrs)	741	44.89	0.34	44.75	44.50	45.60	-0.01	-0.04	738	44.89	0.35	44.75	44.50	45.60	0.02	0.02
	Height (m)	741	1.76	0.07	1.76	1.52	2.02	-0.05	1.00	738	1.62	0.06	1.63	1.42	1.80	-0.10	1.00
	BMI (kg/m²)	741	27.84	4.29	27.23	15.93	48.41	1.00	-0.05	738	26.92	5.44	25.56	17.34	56.55	1.00	-0.10
	Weight (kg)	741	86.56	14.63	85.20	51.00	137.50	0.87	0.39	738	70.96	14.68	68.20	41.80	139.40	0.91	0.29
BRIGHT	Age (yrs)	719	56.29	11.15	57.00	21.00	84.00	-0.12	-0.24	1087	57.43	11.23	58.00	21.00	85.00	0.07	-0.24
	Height (m)	719	1.74	0.07	1.74	1.51	1.95	-0.06	1.00	1087	1.61	0.06	1.61	1.39	1.81	-0.08	1.00
	BMI (kg/m²)	719	27.74	3.28	27.68	17.20	38.26	1.00	-0.06	1087	27.36	4.04	27.03	16.85	41.66	1.00	-0.08
	Weight (kg)	719	84.22	11.90	83.45	51.00	121.00	0.80	0.54	1087	71.19	11.55	69.90	41.70	122.80	0.87	0.41
CAPS1 cases	Age (yrs)	505	68.15	7.38	67.90	49.50	81.10	-0.16	-0.19	NA	NA	NA	NA	NA	NA	NA	NA
	Height (m)	489	1.77	0.07	1.77	1.58	1.97	-0.04	1.00	NA	NA	NA	NA	NA	NA	NA	NA
	BMI (kg/m²)	484	26.42	3.48	26.01	18.36	41.77	1.00	-0.04	NA	NA	NA	NA	NA	NA	NA	NA
	Weight (kg)	485	82.50	12.26	82.00	47.00	135.00	0.86	0.47	NA	NA	NA	NA	NA	NA	NA	NA
CAPS1 controls	Age (yrs)	506	66.36	7.50	65.90	44.90	79.80	-0.17	-0.25	NA	NA	NA	NA	NA	NA	NA	NA

	Height (m)	491	1.77	0.07	1.76	1.58	2.01	0.04	1.00	NA	NA	NA	NA	NA	NA	NA	NA
	BMI (kg/m²)	483	26.49	3.58	26.25	16.60	58.36	1.00	0.04	NA	NA	NA	NA	NA	NA	NA	NA
	Weight (kg)	485	82.75	13.10	82.00	53.00	187.00	0.88	0.51	NA	NA	NA	NA	NA	NA	NA	NA
CAPS2 cases	Age (yrs)	1483	66.13	7.07	65.40	44.90	82.20	-0.09	-0.24	NA	NA	NA	NA	NA	NA	NA	NA
	Height (m)	1483	1.77	0.06	1.77	1.54	2.00	0.02	1.00	NA	NA	NA	NA	NA	NA	NA	NA
	BMI (kg/m²)	1423	26.34	3.37	25.95	15.74	55.24	1.00	0.02	NA	NA	NA	NA	NA	NA	NA	NA
	Weight (kg)	1424	82.53	12.24	82.00	47.00	185.00	0.88	0.49	NA	NA	NA	NA	NA	NA	NA	NA
CAPS2 controls	Age (yrs)	519	67.24	7.35	66.90	49.10	80.10	-0.05	-0.09	NA	NA	NA	NA	NA	NA	NA	NA
	Height (m)	519	1.76	0.06	1.76	1.59	1.98	-0.07	1.00	NA	NA	NA	NA	NA	NA	NA	NA
	BMI (kg/m²)	500	26.03	3.32	25.75	17.56	45.20	1.00	-0.07	NA	NA	NA	NA	NA	NA	NA	NA
	Weight (kg)	504	80.80	11.38	80.00	55.00	140.00	0.88	0.42	NA	NA	NA	NA	NA	NA	NA	NA
CAD-WTCCC	Age (yrs)	1491	59.96	7.98	61.00	35.00	82.00	-0.16	-0.10	388	60.28	8.47	61.00	36.00	81.00	-0.09	-0.12
	Height (m)	1491	1.74	0.07	1.74	1.40	1.98	-0.08	1.00	388	1.60	0.07	1.59	1.42	1.78	-0.09	1.00
	BMI (kg/m²)	1489	27.55	3.91	27.13	16.53	53.40	1.00	-0.08	387	27.84	5.23	27.18	12.81	51.73	1.00	-0.09
	Weight (kg)	1489	83.25	13.07	82.50	37.70	173.00	0.86	0.44	387	71.04	14.13	69.20	29.20	149.50	0.91	0.33
CHS	Age (yrs)	1281	73.00	5.66	72.00	65.00	95.00	-0.15	-0.22	1957	71.90	5.15	71.00	65.00	98.00	-0.14	-0.23
	Height (m)	1277	1.73	0.07	1.73	1.51	1.93	-0.04	1.00	1955	1.59	0.06	1.59	1.24	1.78	-0.04	1.00
	BMI (kg/m²)	1276	26.40	3.50	26.10	18.60	44.20	1.00	-0.04	1952	26.40	4.78	25.80	18.50	48.30	1.00	-0.05
	Weight (kg)	1276	79.70	11.90	79.00	50.00	145.00	0.86	0.46	1952	67.10	12.90	65.50	37.30	133.20	0.91	0.04
CoLaus	Age (yrs)	2547	52.92	10.77	52.20	34.90	75.10	0.18	-0.19	2862	53.88	10.72	53.70	35.00	75.40	0.16	-0.20
	Height (m)	2547	1.75	0.07	1.75	1.33	1.98	-0.15	1.00	2862	1.63	0.07	1.63	1.31	1.85	-0.21	1.00
	BMI (kg/m²)	2547	26.64	4.19	26.20	11.70	81.10	1.00	-0.15	2861	25.15	4.91	24.20	8.10	59.20	1.00	-0.21
	Weight (kg)	2547	81.54	13.41	79.90	36.50	175.40	0.85	0.38	2861	66.43	12.98	64.00	21.40	171.00	0.91	0.22
deCODE	Age (yrs)	9213	64.74	15.93	78.00	18.00	103.00	-0.15	-0.31	17586	57.94	18.46	43.00	11.50	108.00	0.08	-0.34
	Height (m)	9213	1.78	0.07	1.80	1.30	2.07	0.02	1.00	17586	1.65	0.06	1.69	1.34	1.99	-0.07	1.00
	BMI (kg/m²)	9213	27.71	4.70	45.99	14.52	72.14	1.00	0.02	17586	26.83	5.49	18.56	13.67	73.51	1.00	-0.07
	Weight (kg)	9213	87.89	16.57	149.00	40.00	216.00	0.88	0.44	17586	73.49	15.77	53.00	33.00	220.00	0.92	0.30
DGI cases	Age (yrs)	687	63.22	10.32	64.28	31.36	91.04	-0.19	-0.24	630	65.43	10.45	66.46	31.12	93.09	-0.26	-0.21
	Height (m)	687	1.74	0.06	1.74	1.43	2.00	-0.02	1.00	630	1.61	0.06	1.61	1.41	1.85	-0.08	1.00
	BMI (kg/m²)	687	28.15	3.87	27.97	18.05	46.71	1.00	-0.02	630	28.78	4.86	28.20	18.51	53.73	1.00	-0.08
	Weight (kg)	687	85.58	13.34	84.80	53.40	148.00	0.87	0.47	630	74.60	13.38	73.50	43.80	141.00	0.90	0.35
DGI controls	Age (yrs)	553	58.11	10.34	58.28	31.71	84.78	-0.01	-0.03	537	59.11	10.27	59.60	33.74	89.94	-0.02	-0.27
	Height (m)	553	1.76	0.06	1.76	1.57	2.00	-0.03	1.00	537	1.63	0.06	1.63	1.42	1.87	-0.10	1.00
	BMI (kg/m²)	553	26.62	3.20	26.37	16.95	43.89	1.00	-0.03	537	26.72	4.16	26.20	17.67	45.37	1.00	-0.10
	Weight (kg)	553	82.21	11.39	80.30	50.80	143.00	0.86	0.49	537	70.52	11.69	69.50	43.00	124.00	0.89	0.35
EGCUT	Age (yrs)	697	40.62	16.78	38.00	18.00	90.00	0.41	-0.39	720	42.88	15.93	42.00	18.00	92.00	0.35	-0.26
	Height (m)	697	1.79	0.07	1.79	1.58	2.03	-0.15	1.00	720	1.65	0.06	1.65	1.45	1.84	-0.14	1.00
	BMI (kg/m²)	697	26.05	4.61	25.39	15.82	54.00	1.00	-0.15	720	26.25	6.02	25.08	15.90	58.40	1.00	-0.14
	Weight (kg)	697	83.32	15.27	82.00	49.00	191.00	0.90	0.30	720	71.41	16.36	68.00	39.00	160.00	0.94	0.20
EPIC-Obesity Study	Age (yrs)	1621	59.8	9.0	60.0	39.0	77.0	0.03	-0.25	1931	58.8	8.9	59.0	39.0	77.0	0.08	-0.26
	Height (m)	1621	1.74	0.07	1.74	1.49	1.97	-0.05	1.00	1931	1.61	0.06	1.61	1.25	1.83	-0.13	1.00
	BMI (kg/m²)	1621	28.3	3.9	28.2	16.9	43.6	1.00	-0.05	1931	28.6	5.2	28.4	16.1	47.6	1.00	-0.13
	Weight (kg)	1621	85.5	13.3	85.0	42.8	137.6	0.87	0.45	1931	74.0	14.1	72.8	44.6	126.6	0.92	0.27
ERF (EUROSPAN)	Age (yrs)	890	50.14	14.98	50.67	18.00	88.60	0.14	-0.49	1170	49.30	15.34	49.52	18.03	92.10	0.27	-0.42

	Height (m)	890	1.75	0.07	1.75	1.52	1.96	-0.08	1.00	1170	1.61	0.07	1.62	1.41	1.83	-0.11	1.00
	BMI (kg/m²)	890	27.14	3.98	26.78	15.85	42.44	1.00	-0.08	1170	26.36	4.77	25.64	15.54	45.37	1.00	-0.11
	Weight (kg)	890	82.70	13.52	81.40	48.00	133.30	0.86	0.43	1170	68.96	13.14	67.00	42.10	133.90	0.90	0.32
Fenland	Age (yrs)	615	44.48	7.32	45.00	30.00	57.00	0.08	-0.09	787	45.34	7.18	46.00	30.00	57.00	0.09	-0.11
	Height (m)	615	1.77	0.07	1.77	1.59	2.01	-0.01	1.00	787	1.64	0.06	1.64	1.43	1.90	-0.07	1.00
	BMI (kg/m²)	615	27.62	4.07	27.27	18.62	56.66	1.00	-0.01	787	26.68	5.46	25.44	17.27	55.39	1.00	-0.07
	Weight (kg)	615	86.76	13.87	85.50	49.40	155.70	0.83	0.46	787	71.48	15.25	68.30	42.40	142.50	0.93	0.28
FHS controls	Age (yrs)	218	52.09	12.20	54.19	26.99	76.86	0.10	-0.18	216	58.25	8.57	59.10	27.33	81.09	-0.06	-0.11
	Height (m)	208	1.77	0.07	1.78	1.55	1.98	-0.07	1.00	207	1.62	0.06	1.63	1.46	1.81	0.04	1.00
	BMI (kg/m²)	208	27.74	3.59	27.10	19.56	42.51	1.00	-0.07	207	26.64	4.66	25.61	17.48	43.39	1.00	0.04
	Weight (kg)	208	87.22	13.09	84.80	57.61	131.09	0.83	0.50	207	70.34	13.59	67.59	43.09	122.05	0.93	0.41
FHS cases	Age (yrs)	220	54.20	11.87	55.75	26.38	74.14	0.02	-0.27	243	57.43	10.08	58.42	26.48	84.00	-0.04	-0.32
	Height (m)	208	1.77	0.07	1.77	1.58	1.96	-0.18	1.00	233	1.62	0.06	1.62	1.42	1.79	-0.02	1.00
	BMI (kg/m²)	208	28.51	4.68	28.15	15.96	45.72	1.00	-0.18	233	28.27	6.51	26.75	18.43	50.18	1.00	-0.02
	Weight (kg)	208	89.04	15.03	87.77	51.71	146.51	0.89	0.27	233	73.87	17.94	69.40	45.36	1.00	0.95	0.29
FRAM	Age (yrs)	3700	38.72	8.73	38.00	21.00	72.00	0.16	-0.05	4389	38.23	8.63	38.00	21.00	70.00	0.27	-0.08
	Height (m)	3700	1.77	0.07	1.77	1.52	2.00	-0.04	1.00	4389	1.63	0.06	1.63	1.40	1.85	-0.07	1.00
	BMI (kg/m²)	3700	27.07	4.18	26.61	16.91	56.54	1.00	-0.04	4384	24.88	5.25	23.57	14.96	60.58	1.00	-0.07
	Weight (kg)	3700	84.43	14.43	82.56	44.00	177.36	0.86	0.44	4384	65.84	14.64	62.60	38.10	170.10	0.89	0.35
FTC	Age (yrs)	NA	NA	NA	NA	NA	NA	NA	NA	126	63.49	12.08	66.28	26.52	75.94	0.27	-0.22
	Height (m)	NA	NA	NA	NA	NA	NA	NA	NA	125	1.61	0.06	1.61	1.47	1.78	-0.18	1.00
	BMI (kg/m²)	NA	NA	NA	NA	NA	NA	NA	NA	125	25.07	3.41	24.65	18.69	35.04	1.00	-0.18
	Weight (kg)	NA	NA	NA	NA	NA	NA	NA	NA	126	65.53	9.68	64.25	46.50	100.50	0.86	0.30
FUSION controls	Age (yrs)	572	63.41	7.62	64.00	46.00	90.91	-0.05	-0.24	599	63.71	7.27	64.75	42.60	89.15	0.05	-0.29
	Height (m)	569	1.74	0.06	1.74	1.56	1.91	-0.05	1.00	598	1.60	0.06	1.60	1.44	1.79	-0.12	1.00
	BMI (kg/m²)	572	27.02	3.53	26.78	19.22	51.07	1.00	-0.05	599	27.24	4.15	26.80	17.50	45.90	1.00	-0.12
	Weight (kg)	572	81.40	11.98	80.65	52.10	151.10	0.84	0.46	599	69.99	11.44	68.80	45.70	127.10	0.88	0.33
FUSION cases	Age (yrs)	623	62.06	7.33	62.41	40.77	77.81	-0.21	-0.18	469	63.66	7.75	64.01	45.00	83.19	-0.21	-0.22
	Height (m)	617	1.73	0.06	1.73	1.52	1.97	0.00	1.00	465	1.60	0.06	1.59	1.40	1.76	0.02	1.00
	BMI (kg/m²)	623	29.44	4.02	29.14	18.19	43.14	1.00	0.00	469	31.20	5.25	30.71	16.00	47.59	1.00	0.02
	Weight (kg)	623	88.43	13.58	88.00	50.90	144.00	0.89	0.42	469	79.51	14.70	76.90	35.00	125.50	0.91	0.39
GENMETS controls	Age (yrs)	401	48.91	10.15	49.00	30.00	74.00	0.03	-0.27	422	48.60	10.18	49.00	30.00	74.00	0.04	-0.26
	Height (m)	401	1.75	0.07	1.75	1.55	1.80	-0.16	1.00	422	1.75	0.07	1.75	1.55	1.96	-0.16	1.00
	BMI (kg/m²)	401	25.41	3.08	24.94	17.09	39.04	1.00	-0.16	422	25.34	3.15	24.92	17.09	39.04	1.00	-0.16
	Weight (kg)	401	78.03	10.33	77.00	54.00	116.00	0.82	0.43	422	77.62	10.60	77.00	51.00	113.00	0.81	0.45
GENMETS cases	Age (yrs)	410	49.11	10.55	49.00	30.00	75.00	-0.07	-0.24	414	52.25	11.62	51.00	30.00	75.00	-0.07	-0.27
	Height (m)	410	1.76	0.07	1.76	1.58	1.97	-0.13	1.00	414	1.61	0.07	1.61	1.35	1.82	-0.13	1.00
	BMI (kg/m²)	410	29.45	3.62	28.84	23.19	47.07	1.00	-0.13	414	29.62	4.88	28.68	20.58	45.78	1.00	-0.13
	Weight (kg)	410	91.16	12.56	89.00	65.00	151.00	0.81	0.47	414	76.60	13.40	75.00	49.00	123.00	0.87	0.36
GerMiFSI	Age (yrs)	394	57.27	8.57	59.00	32.00	82.00	-0.08	-0.17	206	60.39	8.67	61.00	36.00	82.00	0.04	-0.02
	Height (m)	394	1.75	0.06	1.75	1.59	1.97	-0.05	1.00	206	1.63	0.06	1.63	1.44	1.79	0.00	1.00
	BMI (kg/m²)	394	27.36	3.30	26.83	18.42	46.24	1.00	-0.05	206	27.17	4.17	26.91	19.05	40.75	1.00	0.00
	Weight (kg)	394	83.92	11.67	83.00	60.00	140.00	0.86	0.46	206	72.29	12.24	71.00	48.00	115.00	0.90	0.42
GerMiFSII	Age (yrs)	901	60.14	12.17	59.00	29.00	88.00	-0.01	-0.01	223	62.80	12.76	61.00	34.00	90.00	-0.17	0.17

	Height (m)	901	1.74	0.07	1.74	1.52	2.00	0.02	1.00	223	1.62	0.06	1.61	1.50	1.79	-0.20	1.00
	BMI (kg/m²)	901	27.82	3.54	27.41	18.44	54.08	1.00	-0.02	223	28.06	4.76	27.69	16.90	46.30	1.00	-0.20
	Weight (kg)	901	83.00	12.49	83.00	50.20	160.00	0.85	0.50	223	73.55	12.62	72.10	47.00	130.00	0.90	0.23
KORA S3	Age (yrs)	813	52.96	10.09	54.00	25.00	69.00	0.22	-0.33	831	52.09	10.08	53.00	25.00	69.00	0.33	-0.32
	Height (m)	813	1.74	0.07	1.74	1.51	1.96	-0.14	1.00	830	1.61	0.06	1.61	1.44	1.80	-0.25	1.00
	BMI (kg/m²)	813	27.69	3.45	27.29	18.73	40.67	1.00	-0.14	829	26.98	4.64	26.40	16.71	45.43	1.00	-0.25
	Weight (kg)	813	83.58	11.46	83.30	59.00	132.50	0.79	0.44	829	69.87	11.88	68.30	42.50	121.80	0.88	0.19
KORA S4	Age (yrs)	884	54.22	8.92	54.00	28.00	72.00	0.13	-0.31	930	53.62	8.80	53.00	25.00	74.00	0.32	-0.27
	Height (m)	883	1.74	0.07	1.74	1.56	1.95	-0.13	1.00	928	1.61	0.06	1.61	1.44	1.83	-0.18	1.00
	BMI (kg/m²)	883	27.99	3.91	27.59	18.31	55.11	1.00	-0.13	928	27.49	5.07	26.78	18.21	51.22	1.00	-0.18
	Weight (kg)	883	85.13	12.93	84.00	54.20	192.70	0.83	0.40	929	71.46	13.30	69.60	43.90	142.00	0.90	0.23
MICROS	Age (yrs)	475	45.09	15.67	41.97	18.19	87.85	0.28	-0.45	622	45.38	16.41	42.55	18.00	83.88	0.40	-0.52
	Height (m)	467	1.73	0.07	1.73	1.53	1.95	-0.07	1.00	612	1.61	0.07	1.61	1.40	1.79	-0.28	1.00
	BMI (kg/m²)	475	26.07	3.96	25.62	18.13	42.75	1.00	-0.07	622	25.28	5.32	24.27	14.03	71.26	1.00	-0.28
	Weight (kg)	468	78.38	13.32	76.90	47.00	127.50	0.86	0.43	612	65.16	13.19	63.00	36.60	169.00	0.91	0.13
MIGEN	Age (yrs)	1622	45.40	6.97	45.70	19.40	92.00	0.03	-0.08	1030	49.39	7.40	51.00	18.71	61.00	0.09	-0.14
	Height (m)	1622	1.76	0.08	1.75	1.53	2.08	0.02	1.00	1030	163.10	0.08	1.63	1.10	1.96	-0.06	1.00
	BMI (kg/m²)	1622	27.93	4.57	27.40	17.49	54.30	1.00	0.02	1030	27.96	7.03	26.35	14.78	78.41	1.00	-0.06
	Weight (kg)	1622	86.57	16.30	84.00	52.00	181.60	0.88	0.47	1030	74.42	19.71	70.00	43.09	205.02	0.94	0.27
NBS-WTCCC	Age (yrs)	696	45.41	11.77	47.00	17.00	69.00	0.06	-0.15	745	41.44	12.58	42.00	17.00	69.00	0.15	-0.19
	Height (m)	696	1.78	0.07	1.78	1.50	2.00	-0.07	1.00	745	1.65	0.07	1.65	1.48	1.83	-0.20	1.00
	BMI (kg/m²)	694	26.76	4.12	26.30	18.13	53.19	1.00	-0.07	743	25.75	4.46	24.86	18.08	47.22	1.00	-0.20
	Weight (kg)	694	85.03	14.35	82.73	54.09	173.00	0.88	0.41	743	69.74	12.21	66.82	50.00	127.27	0.89	0.25
NFBC1966	Age (yrs)	2250	31.00	0.00	31.00	31.00	31.00	NA	NA	2249	31.00	0.00	31.00	31.00	31.00	NA	NA
	Height (m)	2250	1.78	0.06	1.78	1.52	2.03	-0.04	1.00	2249	1.65	0.06	1.65	1.05	1.87	-0.10	1.00
	BMI (kg/m²)	2250	25.18	3.62	24.86	15.32	47.58	1.00	-0.04	2247	24.16	4.68	23.13	15.43	54.35	1.00	-0.10
	Weight (kg)	2250	80.15	12.72	78.70	49.40	150.40	0.89	0.42	2247	65.52	13.24	63.00	29.20	165.40	0.92	0.28
NHS	Age (yrs)	NA	NA	NA	NA	NA	NA	NA	NA	2265	54.32	6.67	55.00	21.00	66.00	0.05	-0.02
	Height (m)	NA	NA	NA	NA	NA	NA	NA	NA	2265	1.64	0.06	1.63	1.45	1.98	-0.10	1.00
	BMI (kg/m²)	NA	NA	NA	NA	NA	NA	NA	NA	2265	25.13	4.53	24.13	16.40	53.14	1.00	-0.10
	Weight (kg)	NA	NA	NA	NA	NA	NA	NA	NA	2265	149.16	27.78	144.00	84.00	310.00	0.92	0.29
NSPHS	Age (yrs)	309	47.56	20.83	48.00	15.00	87.00	0.31	-0.32	347	46.47	20.60	45.00	14.00	91.00	0.49	-0.40
	Height (m)	308	1.71	0.07	1.72	1.48	1.89	-0.04	1.00	344	1.58	0.07	1.59	1.40	1.75	-0.16	1.00
	BMI (kg/m²)	307	26.75	4.54	26.23	17.78	46.49	1.00	-0.04	340	25.97	5.07	24.98	16.44	46.68	1.00	-0.16
	Weight (kg)	307	78.42	14.66	77.00	51.00	138.00	0.88	0.42	342	64.99	13.11	63.00	38.00	121.00	0.89	0.29
NTRNESDA	Age (yrs)	1211	46.08	13.43	48.00	18.00	81.00	0.26	-0.29	2311	42.64	13.23	42.00	18.00	78.00	0.23	-0.23
	Height (m)	1211	1.82	0.07	1.82	1.59	2.07	-0.14	1.00	2311	1.69	0.06	1.69	1.50	1.96	-0.15	1.00
	BMI (kg/m²)	1210	26.05	3.92	25.62	15.95	50.21	1.00	-0.14	2306	25.15	4.82	24.19	14.61	53.27	1.00	-0.15
	Weight (kg)	1210	85.89	13.80	84.15	50.10	170.00	0.87	0.36	2306	71.83	14.06	69.20	44.00	167.00	0.92	0.24
ORCADES	Age (yrs)	332	54.27	15.73	54.66	17.29	93.75	0.29	-0.38	384	53.01	15.68	54.27	17.71	97.62	0.25	-0.38
	Height (m)	324	1.75	0.07	1.75	1.59	1.99	-0.22	1.00	371	1.61	0.06	1.61	1.38	1.78	-0.17	1.00
	BMI (kg/m²)	332	28.08	4.27	27.67	16.97	47.10	1.00	-0.22	384	27.48	5.18	26.60	18.47	47.63	1.00	-0.17
	Weight (kg)	324	85.76	13.21	84.25	44.40	148.40	0.87	0.28	371	71.06	13.69	69.10	45.60	123.10	0.92	0.22
PLCO	Age (yrs)	2244	64.2	5.1	64.0	55.0	74.0	-0.11	-0.11	NA	NA	NA	NA	NA	NA	NA	NA

	Height (m)	2244	1.78	0.07	1.78	1.55	2.03	-0.04	1.00	NA	NA	NA	NA	NA	NA	NA	NA
	BMI (kg/m²)	2236	27.5	3.8	27.1	13.3	48.2	1.00	-0.04	NA	NA	NA	NA	NA	NA	NA	NA
	Weight (kg)	2236	87.4	13.6	86.2	38.6	176.9	0.88	0.44	NA	NA	NA	NA	NA	NA	NA	NA
PROCARDIS	Age (yrs)	1700	59.29	7.08	60.00	34.00	82.00	-0.07	-0.14	612	61.21	6.72	62.00	33.00	81.00	0.03	-0.21
	Height (m)	1700	1.75	0.07	1.75	1.51	2.06	-0.10	1.00	612	1.63	0.07	1.64	1.44	1.85	-0.22	1.00
	BMI (kg/m²)	1700	27.60	3.80	27.14	18.34	48.23	1.00	-0.10	612	26.71	5.00	25.94	15.43	51.37	1.00	-0.22
	Weight (kg)	1700	84.51	12.91	83.50	51.00	159.00	0.84	0.44	612	71.21	13.30	69.00	42.00	145.00	0.89	0.23
RS-I	Age (yrs)	2427	68.13	8.16	67.05	55.01	97.81	-0.08	-0.31	3547	70.32	9.60	69.40	55.00	99.22	0.05	-0.38
	Height (m)	2372	1.75	0.07	1.75	1.51	1.98	-0.05	1.00	3375	1.61	0.07	1.62	1.01	1.92	-0.15	1.00
	BMI (kg/m²)	2372	25.68	2.99	25.61	14.19	38.19	1.00	-0.05	3372	26.74	4.10	26.31	15.43	59.50	1.00	-0.15
	Weight (kg)	2375	78.58	10.74	77.80	41.00	122.30	0.82	0.53	3383	69.59	11.29	68.70	40.10	146.50	0.85	0.37
RUNMC	Age (yrs)	1839	63.47	8.34	64.00	24.00	91.00	-0.02	-0.12	1132	55.41	11.14	64.00	25.00	91.00	0.17	-0.23
	Height (m)	1777	1.77	0.07	1.85	1.55	2.00	-0.10	1.00	1096	1.66	0.06	1.75	1.38	1.85	-0.15	1.00
	BMI (kg/m²)	1777	25.98	3.66	21.90	16.10	61.30	1.00	-0.10	1096	25.44	4.26	24.50	17.30	52.70	1.00	-0.15
	Weight (kg)	1777	81.49	12.33	75.00	46.00	185.00	0.87	0.40	1096	70.30	12.16	75.00	46.00	150.00	0.90	0.29
SardiNIA	Age (yrs)	1886	44.08	18.10	42.90	14.00	93.90	0.51	-0.46	2419	43.19	17.30	42.10	14.00	101.30	0.55	-0.50
	Height (m)	1883	1.66	0.07	1.66	1.44	1.96	-0.22	1.00	2415	1.55	0.06	1.55	1.31	1.78	-0.31	1.00
	BMI (kg/m²)	1885	26.15	4.11	25.90	14.90	42.90	1.00	-0.22	2416	24.75	5.03	23.80	13.90	53.30	1.00	-0.31
	Weight (kg)	1883	72.27	11.71	72.00	34.00	135.00	0.84	0.33	2415	59.17	11.40	57.00	32.00	145.00	0.90	0.11
SASBAC cases	Age (yrs)	NA	NA	NA	NA	NA	NA	NA	NA	795	62.64	6.26	63.00	50.00	75.00	0.11	-0.08
	Height (m)	NA	NA	NA	NA	NA	NA	NA	NA	794	1.64	0.06	1.65	1.47	1.82	-0.16	1.00
	BMI (kg/m²)	NA	NA	NA	NA	NA	NA	NA	NA	793	25.79	4.00	25.21	16.22	46.67	1.00	-0.16
	Weight (kg)	NA	NA	NA	NA	NA	NA	NA	NA	794	69.68	11.18	68.00	40.00	117.00	0.86	0.30
SASBAC controls	Age (yrs)	NA	NA	NA	NA	NA	NA	NA	NA	764	62.77	6.34	63.00	49.00	75.00	0.02	-0.05
	Height (m)	NA	NA	NA	NA	NA	NA	NA	NA	758	1.64	0.05	1.64	1.28	1.81	-0.06	1.00
	BMI (kg/m²)	NA	NA	NA	NA	NA	NA	NA	NA	755	25.52	4.10	25.22	16.94	59.52	1.00	-0.06
	Weight (kg)	NA	NA	NA	NA	NA	NA	NA	NA	760	68.67	11.69	67.00	42.00	168.00	0.89	0.33
SEARCH/UKOPS	Age (yrs)	NA	NA	NA	NA	NA	NA	NA	NA	1710	57.15	10.20	58.00	20.00	91.00	-0.09	-0.13
	Height (m)	NA	NA	NA	NA	NA	NA	NA	NA	1592	1.63	0.07	1.63	1.35	1.83	-0.14	1.00
	BMI (kg/m²)	NA	NA	NA	NA	NA	NA	NA	NA	1556	26.99	5.20	25.99	17.47	53.67	1.00	-0.14
	Weight (kg)	NA	NA	NA	NA	NA	NA	NA	NA	1581	71.32	13.99	69.00	44.00	135.17	0.91	0.27
SHIP	Age (yrs)	2019	50.88	16.43	52.00	20.00	80.00	0.25	-0.48	2073	48.58	16.02	48.00	20.00	81.00	0.41	-0.48
	Height (m)	2019	1.75	0.07	1.75	1.48	1.98	-0.12	1.00	2073	1.63	0.07	1.63	1.42	1.94	-0.26	1.00
	BMI (kg/m²)	2019	27.68	4.04	27.41	18.06	48.07	1.00	-0.12	2073	26.92	5.31	26.16	16.10	52.40	1.00	-0.26
	Weight (kg)	2019	85.06	13.56	83.80	49.90	156.40	0.83	0.40	2073	71.20	13.74	69.20	41.30	133.30	0.89	0.16
T2D-WTCCC	Age (yrs)	1105	58.95	9.91	59.00	29.00	96.00	-0.31	-0.17	798	57.94	10.45	59.00	27.00	85.00	-0.30	-0.16
	Height (m)	1105	1.75	0.07	1.75	1.50	1.98	-0.02	1.00	798	1.61	0.07	1.61	1.37	1.83	0.01	1.00
	BMI (kg/m²)	1105	30.29	5.36	29.71	18.02	55.91	1.00	-0.02	798	32.56	6.87	31.52	17.91	62.37	1.00	0.01
	Weight (kg)	1105	93.37	17.86	91.17	47.63	161.94	0.91	0.40	798	85.04	19.29	82.56	43.00	155.70	0.93	0.37
TwinsUK	Age (yrs)	NA	NA	NA	NA	NA	NA	NA	NA	1479	46.19	12.31	47.55	16.62	76.54	0.15	-0.20
	Height (m)	NA	NA	NA	NA	NA	NA	NA	NA	1479	1.62	0.06	1.63	1.42	1.80	-0.12	1.00
	BMI (kg/m²)	NA	NA	NA	NA	NA	NA	NA	NA	1477	25.02	4.80	24.06	13.22	52.71	1.00	-0.12
	Weight (kg)	NA	NA	NA	NA	NA	NA	NA	NA	1477	66.03	12.97	64.00	35.10	140.90	0.92	0.27
VIS	Age (yrs)	328	55.95	14.94	57.00	18.00	88.00	0.23	-0.40	467	56.97	15.64	57.00	18.00	93.00	0.30	-0.45

	Height (m)	325	1.76	0.07	1.76	1.58	2.04	-0.10	1.00	459	1.62	0.07	1.62	1.43	1.91	-0.20	1.00
	BMI (kg/m²)	328	27.55	3.69	27.49	18.36	40.69	1.00	-0.10	467	27.18	4.50	27.08	17.01	52.02	1.00	-0.20
	Weight (kg)	325	85.56	13.01	84.80	50.90	136.50	0.83	0.47	445	70.99	12.45	69.80	46.60	153.00	0.89	0.26
Stage 2 (in-sili	co replicatio	n studi	es)														
BHS	Age (yrs)	558	53.47	17.15	53.65	17.60	91.40	0.15	-0.38	770	53.71	17.07	53.05	17.30	90.50	0.11	-0.43
	Height (m)	558	1.75	0.07	1.75	1.53	1.99	-0.09	1.00	770	1.62	0.06	1.62	1.35	1.90	-0.15	1.00
	BMI (kg/m²)	558	26.62	3.57	26.25	15.77	40.12	1.00	-0.09	769	25.49	4.42	24.66	16.82	40.77	1.00	-0.15
	Weight (kg)	558	81.80	12.31	80.25	46.40	127.00	0.83	0.47	769	67.06	12.02	65.00	34.80	109.00	0.90	0.29
Corogene	Age (yrs)	2266	59.66	12.83	61.00	25.00	92.00	-0.03	-0.26	1490	62.61	13.47	65.00	25.00	94.00	0.09	-0.30
	Height (m)	2267	1.76	0.07	1.76	1.34	2.03	-0.04	1.00	1491	1.62	0.07	1.62	1.05	1.85	-0.14	1.00
	BMI (kg/m²)	2265	27.39	4.23	26.79	15.95	54.88	1.00	-0.04	1491	26.87	5.21	26.07	13.63	57.68	1.00	-0.14
	Weight (kg)	2265	85.00	14.42	83.50	44.00	170.00	0.89	0.41	1491	70.14	13.88	68.30	36.00	144.00	0.90	0.28
EGCUT	Age (yrs)	135	40.93	17.81	36.50	18.00	80.00	0.33	-0.55	210	41.03	16.46	39.00	18.00	87.00	0.41	-0.37
	Height (m)	135	1.79	0.07	1.80	1.58	2.04	-0.14	1.00	210	1.66	0.07	1.66	1.44	1.84	-0.25	1.00
	BMI (kg/m²)	135	26.03	4.95	25.11	17.30	43.65	1.00	-0.14	210	25.63	6.09	24.02	17.00	48.24	1.00	-0.25
	Weight (kg)	135	83.68	16.41	80.50	50.00	143.00	0.91	0.27	210	70.46	16.22	66.50	40.00	136.00	0.93	0.10
FHS	Age (yrs)	662	48.20	13.70	46.30	25.60	85.70	0.15	-0.24	880	47.50	13.00	45.00	25.70	85.80	0.19	-0.26
	Height (m)	632	1.77	0.07	1.77	1.57	2.03	-0.09	1.00	831	1.63	0.06	1.63	1.41	1.96	-0.12	1.00
	BMI (kg/m²)	632	27.80	4.30	27.20	18.40	46.20	1.00	-0.09	831	27.10	6.10	26.10	16.50	55.00	1.00	-0.12
	Weight (kg)	632	87.10	14.60	85.30	55.30	140.60	0.88	0.39	831	72.30	16.60	68.90	41.70	144.20	0.94	0.22
FINGESTURE case	es Age (yrs)	745	61.19	10.58	62.00	34.00	85.00	-0.13	-0.33	198	67.44	10.33	68.00	31.00	85.00	-0.05	-0.28
	Height (m)	745	1.74	0.07	1.74	1.55	1.97	0.10	1.00	198	1.60	0.06	1.60	1.46	1.76	-0.02	1.00
	BMI (kg/m²)	739	27.22	3.93	27.02	16.20	44.80	1.00	0.10	196	28.14	5.17	27.98	16.67	46.09	1.00	-0.02
	Weight (kg)	743	82.32	14.09	81.00	42.00	150.00	0.89	0.53	197	71.91	14.06	71.60	37.50	112.00	0.92	0.38
GOOD	Age (yrs)	938	18.90	0.60	18.80	18.00	20.10	0.03	0.01	NA	NA	NA	NA	NA	NA	NA	NA
	Height (m)	938	1.82	0.07	1.82	1.61	2.03	-0.05	1.00	NA	NA	NA	NA	NA	NA	NA	NA
	BMI (kg/m²)	938	22.40	3.20	21.90	16.10	41.60	1.00	-0.05	NA	NA	NA	NA	NA	NA	NA	NA
	Weight (kg)	938	73.90	11.60	72.00	51.30	127.00	0.88	0.42	NA	NA	NA	NA	NA	NA	NA	NA
HBCS	Age (yrs)	737	61.41	2.75	60.80	57.00	69.30	-0.03	-0.15	991	61.55	3.05	60.90	56.70	69.80	-0.10	0.03
	Height (m)	736	1.77	0.06	1.77	1.59	1.97	-0.03	1.00	990	1.63	0.06	1.63	1.46	1.83	-0.09	1.00
	BMI (kg/m²)	736	27.56	4.30	27.01	18.75	68.39	1.00	-0.03	990	27.75	5.06	26.98	14.79	50.10	1.00	-0.09
	Weight (kg)	737	86.33	14.51	84.50	56.20	213.30	0.92	0.36	990	73.90	13.89	71.70	37.30	133.80	0.93	0.28
HYPERGENES -	Age (yrs)	1072	62.27	10.71	59.81	28.00	98.00	-0.09	-0.12	766	64.30	11.28	61.00	44.93	113.00	-0.15	-0.14
controls	Height (m)	1072	1.71	0.07	1.70	1.50	1.96	-0.14	1.00	766	1.60	0.06	1.60	1.40	1.81	-0.16	1.00
	BMI (kg/m²)	1072	25.95	3.27	25.59	10.15	40.77	1.00	-0.14	766	24.98	3.73	24.60	16.53	41.35	1.00	-0.16
	Weight (kg)	1072	76.10	10.59	75.00	29.00	118.00	0.81	0.46	766	64.25	10.13	63.00	41.00	110.00	0.87	0.34
HYPERGENES -	Age (yrs)	1189	49.41	10.42	50.00	17.63	84.00	0.04	-0.33	598	48.45	9.57	49.00	18.38	93.00	0.10	-0.19
cases	Height (m)	1189	1.72	0.07	1.72	1.48	1.96	-0.08	1.00	598	1.60	0.07	1.60	1.40	1.97	-0.10	1.00
	BMI (kg/m²)	1189	27.42	3.52	27.13	16.00	47.43	1.00	-0.08	598	26.88	4.96	26.21	17.45	52.35	1.00	-0.10
	Weight (kg)	1189	81.33	12.06	80.00	49.00	139.50	0.82	0.51	598	68.59	13.66	67.00	44.00	164.00	0.89	0.36
MGS	Age (yrs)	1247	52.67	16.01	52.00	18.00	90.00	0.02	-0.13	1350	48.48	16.29	48.00	18.00	90.00	0.03	-0.20
	Height (m)	1247	1.79	0.07	1.78	1.58	2.06	0.04	1.00	1350	1.64	0.07	1.65	1.35	2.01	-0.04	1.00
	BMI (kg/m²)	1247	30.85	6.45	29.84	15.83	72.56	1.00	0.04	1350	31.92	8.55	30.32	16.34	69.09	1.00	-0.04
	Weight (kg)	1247	98.77	22.67	95.25	53.98	249.48	0.93	0.38	1350	86.13	24.22	81.65	47.63	201.85	0.95	0.26

NHS	Age (yrs)	NA	NA	NA	NA	NA	NA	NA	NA	3217	53.22	6.96	54.00	22.00	65.00	-0.02	-0.07
	Height (m)	NA	NA	NA	NA	NA	NA	NA	NA	3217	1.64	0.08	1.63	1.35	1.83	-0.04	1.00
	BMI (kg/m²)	NA	NA	NA	NA	NA	NA	NA	NA	2988	27.13	5.63	26.00	17.01	54.87	1.00	-0.04
	Weight (kg)	NA	NA	NA	NA	NA	NA	NA	NA	2988	160.87	35.21	155.00	90.00	340.00	0.94	0.30
RS-II	Age (yrs)	973	64.48	7.59	61.89	55.14	93.95	-0.13	-0.22	1156	65.04	8.33	62.03	55.12	95.33	-0.03	-0.31
	Height (m)	971	1.76	0.06	1.76	1.57	2.03	-0.10	1.00	1153	1.63	0.06	1.63	1.42	1.90	-0.06	1.00
	BMI (kg/m²)	971	26.92	3.36	26.72	16.78	40.52	1.00	-0.10	1151	27.52	4.45	26.89	16.66	50.12	1.00	-0.06
	Weight (kg)	972	83.32	11.58	82.20	54.00	126.80	0.85	0.44	1151	72.77	12.74	71.10	36.20	150.00	0.90	0.38
RS-III	Age (yrs)	879	55.94	5.43	56.12	45.46	84.15	0.09	-0.24	1130	56.20	6.03	56.42	45.75	97.22	0.07	-0.23
	Height (m)	879	1.79	0.07	1.79	1.61	2.00	-0.07	1.00	1130	1.65	0.06	1.65	1.47	1.85	-0.10	1.00
	BMI (kg/m²)	879	28.03	4.07	27.31	18.42	46.68	1.00	-0.07	1130	27.48	5.06	26.55	14.02	56.87	1.00	-0.10
	Weight (kg)	879	89.75	14.32	87.70	58.30	153.50	0.88	0.41	1130	74.89	14.28	72.80	35.00	158.60	0.92	0.29
Sorbs	Age (yrs)	371	48.10	16.70	48.10	18.10	82.10	0.39	-0.43	536	48.00	15.90	48.60	18.00	88.40	0.49	-0.54
	Height (m)	371	1.77	0.07	1.77	1.58	1.95	-0.24	1.00	536	1.64	0.07	1.64	1.44	1.82	-0.32	1.00
	BMI (kg/m²)	371	27.20	4.00	26.80	19.00	43.90	1.00	-0.24	536	26.90	5.50	26.20	15.40	47.40	1.00	-0.32
	Weight (kg)	371	85.40	12.70	84.00	58.00	139.00	0.85	0.30	536	72.10	14.00	70.00	43.00	126.00	0.92	0.07
WGHS	Age (yrs)	NA	NA	NA	NA	NA	NA	NA	NA	23294	54.70	7.12	52.90	38.71	89.89	-0.02	-0.07
	Height (m)	NA	NA	NA	NA	NA	NA	NA	NA	23099	1.64	0.06	1.65	1.30	2.01	-0.06	1.00
	BMI (kg/m²)	NA	NA	NA	NA	NA	NA	NA	NA	22888	25.91	4.96	24.89	14.23	59.58	1.00	-0.06
	Weight (kg)	NA	NA	NA	NA	NA	NA	NA	NA	23046	70.00	14.18	68.04	38.56	175.09	0.92	0.32
YFS	Age (yrs)	1123	37.55	5.06	39.00	30.00	45.00	0.13	-0.12	1320	37.57	5.01	39.00	30.00	45.00	0.11	-0.06
	Height (m)	911	1.80	0.07	1.80	1.57	2.03	0.04	1.00	1084	1.66	0.06	1.66	1.45	1.89	-0.06	1.00
	BMI (kg/m²)	908	26.76	4.29	26.11	17.54	49.35	1.00	0.04	1081	25.32	5.03	24.34	16.56	58.82	1.00	-0.06
	Weight (kg)	908	86.56	15.65	85.00	54.00	166.00	0.91	0.45	1083	69.82	14.55	67.00	42.00	166.00	0.94	0.29
Polygene ana	lysis study																
QIMR	Age (yrs)	527	23.20	12.00	16.33	15.40	74.00	NA	0.15	948	29.86	14.95	26.00	15.70	84.00	NA	-0.15
	Height (m)	527	1.77	0.07	1.77	1.58	1.99	NA	1.00	948	1.64	0.07	1.64	1.44	1.93	NA	1.00

Supplementary Note

1. AUTHOR CONTRIBUTIONS

GIANT Steering Committee

Goncalo R Abecasis, Themistocles L Assimes, Inês Barroso, Sonja I Berndt, Michael Boehnke, Ingrid B Borecki, Panos Deloukas, Caroline S Fox, Timothy M Frayling (lead), Leif C Groop, Talin Haritunians, Joel N Hirschhorn (chair), David J Hunter, Erik Ingelsson, Robert Kaplan, Ruth JF Loos, Mark I McCarthy, Karen L Mohlke, Kari E North, Jeffrey R O'Connell, Leena Peltonen, David Schlessinger, David P Strachan, Unnur Thorsteinsdottir, Cornelia M van Duijn, H.-Erich Wichmann,

Discussion group (discussed and decided on analyses specific to the manuscript)

Goncalo R Abecasis, Sonja I Berndt, Michael Boehnke, Karol Estrada, Timothy M Frayling (chair), Daniel Gudbjartsson, Nancy L Heard-Costa, Joel N Hirschhorn (chair), Anne U Jackson, Hana Lango Allen, Guillaume Lettre, Mark I McCarthy, Fernando Rivadeneira, Albert Vernon Smith, Nicole Soranzo, André G Uitterlinden, Michael N Weedon

Writing group (drafted and edited manuscript)

Goncalo R Abecasis, Sonja I Berndt (lead), Michael Boehnke, Karol Estrada (lead), Timothy M Frayling (chair), Joel N Hirschhorn (chair), Hana Lango Allen (lead), Guillaume Lettre (lead), Mark I McCarthy, Fernando Rivadeneira (lead), Nicole Soranzo, André G Uitterlinden, Michael N Weedon (lead)

Height meta-analysis group (analyses specific to the manuscript)

Sonja I Berndt, Karol Estrada, Hana Lango Allen, Guillaume Lettre, Sailaja Vedantam, Michael N Weedon

GIANT data preparation group (checked and prepared data from contributing cohorts for meta-analyses)

Sonja I Berndt, Iris M Heid, Erik Ingelsson, Anne U Jackson, Hana Lango Allen, Cecilia M Lindgren, Ruth JF Loos (chair), Jian'an Luan, Reedik Mägi, Lu Qi, Joshua C Randall, Elizabeth K Speliotes, Gudmar Thorleifsson, Sailaja Vedantam, Michael N Weedon, Eleanor Wheeler, Cristen J Willer, Thomas Winkler, Tsegaselassie Workalemahu

Pathway analyses

Joel N Hirschhorn (lead), Guillaume Lettre (chair), Ken Sin Lo, Cameron Palmer, Soumya Raychaudhuri (lead), Ayellet V Segrè (lead)

Polygene analyses

Nilanjan Chatterjee (lead), Karol Estrada (lead), Timothy M Frayling, Michael E Goddard, Andrew C Heath, Joel N Hirschhorn, Erik Ingelsson, Guillaume Lettre, Reedik Mägi , Massimo Mangino, Nicholas G Martin, Mark I McCarthy (chair), Grant W Montgomery, Dale R Nyholt, Jeffrey R O'Connell, Ju-Hyun Park, Shaun Purcell, Albert Vernon Smith, Peter M Visscher (lead), Michael N Weedon, Cristen J Willer, Jian Yang

Secondary signals (conditional) analyses

Sonja I Berndt, Ingrid B Borecki, Mary F Feitosa, Teresa Ferreira (lead), Timothy M Frayling, Erik Ingelsson, Hana Lango Allen (lead), Cecilia M Lindgren (chair), Reedik Mägi, Karen L Mohlke, Joshua C Randall, Elizabeth K Speliotes, Michael N Weedon (chair), Robert Weyant (lead), Eleanor Wheeler, Cristen J Willer (chair)

Gene expression (eQTL) analyses

Sonja I Berndt (chair), Anna Dixon, Elin Grundberg, Ke Hao, Joel N Hirschhorn, Lee Kaplan, Tony Kwan, Liming Liang (lead), Tomi Pastinen (lead), Eric E Schadt (lead), Elizabeth K Speliotes, Dominique J Verlaan

Gene-by-gene interaction analyses

Tushar Bhangale, Timothy M Frayling, Cecilia M Lindgren, John RB Perry, Michael N Weedon (chair), Cristen J Willer, Andrew R Wood (lead)

Family-based and population stratification analyses

Elizabeth L Altmaier, Najaf Amin, Joel N Hirschhorn, Hana Lango Allen, Fernando Rivadeneira (chair), Cornelia M van Duijn, Sailaja Vedantam, Michael N Weedon

Imputation and signal validation by direct genotyping analyses

WTCCC-T2D cohort (imputation validation): Timothy M Frayling, Hana Lango Allen, Michael N Weedon (chair); GCI cohort (signal validation): Kristin G Ardlie, Joel N Hirschhorn (chair), Guillaume Lettre, Rany M Salem, Michael C Turchin

Cohort-specific contributions

Stage 1 – Genome-wide association cohorts

		Overseeing	Geno-	Pheno-	Data
Cohort	Author	(PI)	typing	typing	analysis
ADVANCE	Devin Absher		Х	Х	Х
	Themistocles L Assimes		Х	Х	Х
	Carlos Iribarren	Х			
	Joshua W Knowles		Х	Х	Х
	Thomas Quertermous	Х			
AGES	Thor Aspelund				Х
	Gudny Eiriksdottir	Х			
	Vilmundur Gudnason	Х			
	Tamara B Harris	Х			
	Lenore J Launer	Х			
	Albert Vernon Smith				Х
Amish	Quince Gibson				Х
	Shen Haiqing		Х	Х	
	Jeffrey R O'Connell				Х
	Alan R Shuldiner	Х			
ARIC	Eric Boerwinkle	X	Х	X	
	Keri L Monda				X
	Tom H Mosley, Jr	Х			
	Kari E North	Х			Х
B58C-T1DGC and	Wendy L McArdle		Х		
B58C-WTCCC	David P Strachan	Х		Х	Х
BRIGHT	Mark J Caulfield	Х			
	Anna Dominiczak			Х	
	Martin Farrall			Х	
	Toby Johnson				Х
	Patricia B Munroe	Х			
CAD-WTCCC	Anthony J Balmforth			Х	
	Alistair S Hall	Х			
	Suzanne Rafelt				Х
	Nilesh J Samani	Х			
	John R Thompson				Х
CAPS	Henrik Grönberg	Х		Х	
	Erik Ingelsson	Х			Х
	Fredrik Wiklund			Х	Х
	Jianfeng Xu			Х	Х
CHS	Alice Arnold	X		X	
	Nicole L Glazer				Х
	Talin Haritunians		Х		
	Robert Kaplan	Х		Х	
	Barbara McKnight				Х
	Jerome I Rotter		Х		
CoLaus	Jacques S Beckmann	Х			
	Sven Bergmann	Х			
	Toby Johnson				Х
	Zoltán Kutalik				Х
	Vincent Mooser	Х	Х		
	Dawn Waterworth	X	Х		
deCODE	Daniel Gudbjartsson				Х
	Kari Stefansson	X			
	Valgerdur Steinthorsdottir				Х
	Gudmar Thorleifsson				Х
	Unnur Thorsteinsdottir	Х			
	G. Bragi Walters			Х	

		Overseeing	Geno-	Pheno-	Data
Cohort	Author	(PI)	typing	typing	analysis
DGI	Peter Almgren			Х	
	Leif C Groop	Х		Х	
	Joel N Hirschhorn				
	Guillaume Lettre				Х
	Martin Ridderstråle			Х	
	Elizabeth K Speliotes				Х
	Sailaja Vedantam				Х
EGCUT	Helene Alavere			Х	
	Tõnu Esko				Х
	Andres Metspalu	Х			
	Mari Nelis		Х		
	Mari-Liis Tammesoo				Х
EPIC	Inês Barroso		Х		
	Ruth JF Loos		Х		Х
	Nicholas J Wareham	Х			
	Eleanor Wheeler		Х		Х
	Jing Hua Zhao				
ERF (EUROSPAN)	Najaf Amin				Х
	Yurii S Aulchenko				Х
	Ben Oostra	Х			
	Cornelia M van Duijn	Х		Х	Х
	M. Carola Zillikens				Х
Family Heart Study	Ingrid B Borecki	Х	Х	Х	
	Mary F Feitosa			Х	Х
	Shamika Ketkar			Х	Х
	Michael A Province	Х			
FENLAND	Ruth JF Loos	Х		Х	
	Jian'an Luan		Х		Х
	Nicholas J Wareham	Х			
FRAM	Larry D Atwood	Х	Х		
	Adrienne L Cupples	Х			Х
	Nancy L Heard-Costa				Х
	Julius Suh Ngwa				Х
	Charles White				Х
FTC	Jaakko Kaprio	Х			
	Kirsi Pietiläinen			Х	
	Samuli Ripatti				Х
	Aila Rissanen	Х			
	Ida Surakka				Х
FUSION	Richard N Bergman	Х			
	Michael Boehnke	Х			
	Francis S Collins	Х			
	Anne U Jackson				Х
	Karen L Mohlke	Х			
	Heather M Stringham			Х	
	Jaakko Tuomilehto	X			
	Cristen J Willer				Х
Genmets	Antti Jula			Х	
	Seppo Koskinen			Х	
	Leena Peltonen	Х	Х		
	Samuli Ripatti				Х
	Veikko Salomaa	Х		X	
	Ida Surakka				X
GerMIFSI and	Jeanette Erdmann	Х			
GerMIFSIII	Christian Hengstenberg	Х		X	
	Inke R König				Х
	Michael Preuss				X
	Stefan Schreiber	X		X	
	Heribert Schunkert	X			
	HErich Wichmann			X	
	Andreas Ziegler				X
KORA S3	Christian Gieger	X			X

		Overseeing	Geno-	Pheno-	Data
Cohort	Author	(PI)	typing	typing	analysis
	Iris M Heid				Х
	Thomas Meitinger		Х		
	Martina Müller				Х
KORA S4	Eva Albrecht				Х
	Thomas Illig		Х		
	HErich Wichmann	X		Х	
	Thomas Winkler				Х
MICROS (EUROSPAN)	Alessandro De Grandi		Х	X	
	Andrew A Hicks		Х		
	Asa Johansson				X
	Irene Pichler			Х	
	Peter P Pramstaller	X			
MIGEN	Roberto Elosua				
	Aki S Havulinna			X	
	Sekar Kathiresan	X			
	Olle Melander	X			
	Christopher J O'Donnell	X			
	David S Siscovick	X			
	Elizabeth K Speliotes				X
	Benjamin F Voight	X			X
NFBC1966	Lachlan Coin				X
	Paul Elliott		X	X	
	Nelson Freimer		<u> </u>	X	
	Anna-Liisa Hartikainen		X	X	
	Marjo-Riitta Jarvelin	X	X	X	
	Markku Koiranen			X	
	Jaana Laitinen		X	X	
	Mark I McCarthy		X		
	Leena Peltonen		X	V	
				Χ	× ×
			V	V	Χ
		V	Χ	Χ	
NDS-WILCC		^		×	
NUC		V	V	X	
СПИ		×	X		
	David 5 Hullel	^	X	^	×
			X	×	×
		V	^	^	^
NOPHO (EUROSPAN)	Wilmar Igl	^	v		
			×	v	Y
	Dorret I Boomsma	Y	^	^	^
NINNEODA	Eco IC Geus	~	×		
	Jouke-Jan Hottenga		X		×
	Brenda W Penniny	×	~		~
	Jan H Smit	~		X	
	Gonneke Willemsen			X	
ORCADES	Harry Campbell		X		
(EUROSPAN)	Åsa Johansson				X
,	Veronique Vitart				X
	Sarah H Wild			X	
	James F Wilson	X			
	Alan F Wright	X		X	
PLCO	Sonia I Berndt	X		X	Х
	Stephen J Chanock	X	Х		
	Richard B Haves	X			
	Kevin B Jacobs		Х		Х
PROCARDIS	Martin Farrall				
	Anders Hamsten	X			
	Mark Lathrop	X	Х		
	John F Peden		- •	X	
	Hugh Watkins	X			

Cohort	Author	Overseeing	Geno-	Pheno-	Data
		(FI)	typing	typing	
K3-I	Karal Estrada		V		
	Albert Hofmon	V	^	V	^
	Albert Hollian	A X		^	
	Marialain Datara	^	V		
	Fornando Divedonaira	V	X	×	×
	Andrá C Llittorlindon	A X	X	^ X	
	Andre G Onternindern	A X	^	^ X	
		^	v	^	^
	Joyce B J vall meurs		^		v
DUNING		V			^
RUNING	Martin dan Hajiar	X			
		A X			
CardiNIA		A X			v
Saruinia	Goncalo R Abecasis	^	v		^
			X		
	Antonena Mulas		^		v
	Selena Salina	V			^
	Manuala Lida	A X		V	
040D40		A X		X	
SASBAC		X		×	v
		^		V	^
	Jianjun Liu			×	X
SEARCH/UNUPS	Jonathan Patrick Tyrer		V		X
SHIP	Fionan Ernst	N N	Χ	V	~
	Thereas Keeher	X		×	
	I nomas Kocner	X	V		
	Astrid Petersmann		Χ	V	
		N N		X	
	Henry Volzke	X			X
12D-WICCC		N N		X	X
		X		X	
	Andrew I Hattersley	X		X	X
	Hana Lango Allen	N N	X		X
	Cecilia M Lindgren	X	X		X
	Reedik Magi	N N	X	X	X
	Mark I McCartny	X	X	X	X
	Andrew P Morris				X
	John RB Perry				X
					X
	Joshua C Randali		X		X
	Nigel W Rayner		<u>X</u>		X
	Nell R Robertson		X		X
	Michael N Weedon				X
Turing III/			N/	N N	X
IWINSUK	Niassimo Mangino	N N	X	X	X
	Tim D Creat	X	X	N N	X
	Carolina Houserd	X	v	X	v
KOPCIIIA			X		X
NOROULA	Asa Jonansson			N N	X
				X	
				X	N N
	Ozren Polasek	N N		X	X
	igor Rudan	X		X	
	Lina ∠gaga			X	

Stage 2 – in silico replication cohorts

Cohort	Author	Overseeing (PI)	Geno- typing	Pheno- typing	Data analysis
BHS	John P Beilby	X	-71° - 3	X	
	Matthew N Cooper				X
	Jennie Hui		X		7.
	Robert Lawrence				X
	Arthur W Musk	X		X	
		X			
Corogene	Maria-Liisa Lokki	~~~~	×		
Corogene	Markku S Nieminen	Y	Λ		
	Niina Pellikka	~			Y
		X	×		X
	Markus Perola	~~~~	Λ		X
				X	X
FGCUT	Helene Alavere			X	
20001				~	V
	Andros Motspalu	V			^
	Mari Nalia	^	×		
			^		v
Family Hacut Oture	Ingrid D Derssli	v	V		Ā
Family Heart Study		X	X	X	v
	Mary F Feitosa			X	X
	Shamika Ketkar			X	X
	Michael A Province	X			
FINGESTURE	Gabrielle Boucher				X
	Heikki V Huikuri	X		X	X
	Juhani Junttila			X	X
	John D Rioux	X			X
GOOD	Mattias Lorentzon		Х	X	X
	Claes Ohlsson	X	Х	X	X
	Liesbeth Vandenput			Х	Х
HBCS	Johan Eriksson	Х		Х	
	Eero Kajantie			Х	
	Markus Perola		Х		Х
	Samuli Ripatti		Х		Х
	Elisabeth Widen		Х		
HYPERGENES	Lorena Citterio			Х	
	Daniele Cusi	Х			
	Nicola Glorioso		Х	Х	
	Carlo Rivolta	Х	Х		
	Erika Salvi				X
	Laura Zagato			X	7.
MGS	Jubao Duan		X	~~~~~	
	Pablo V Geiman	Y	X	Y	
		X Y	Λ	~	Y
	Alan B Sandors	Λ	×	×	~
			~	~	V
NUC		· · · ·	~	×	^
бинэ			<u>^</u>		
	David J Hunter	X	X	X	N N
			<u> </u>		X
	LU QI		X	X	X
KS-II and KS-III	Yurii S Aulchenko				X
	Karol Estrada		X		X
	Albert Hofman	X		X	
	Manfred Kayser	X			
	Marjolein J Peters		Х		
	Fernando Rivadeneira	X	Х	X	X
	André G Uitterlinden	X	Х	Х	X
	Cornelia M van Duijn	X		X	X
	Joyce B J van Meurs		Х		
	M. Carola Zillikens				Х
Sorbs	Peter Kovacs		Х	Х	
	Reedik Mägi				X

	Inga Prokopenko				Х
	Michael Stumvoll	Х			
	Anke Tönjes	Х		Х	
WGHS	Daniel I Chasman		Х		Х
	Guillaume Paré		Х		
	Alex N Parker		Х		
	Paul M Ridker	Х			
YFS	Mika Kähönen	Х		Х	
	Johannes Kettunen		Х		Х
	Terho Lehtimäki	Х		Х	
	Niina Pellikka		Х		Х
	Olli Raitakari	Х		Х	
	Jorma Viikari	X		X	

Additional analyses cohorts

Cohort	Author	Overseeing (PI)	Geno- typing	Pheno- typing	Data analysis
GCI height extremes (additional genotyping)	Kristin G Ardlie	Х			
	Joel N Hirschhorn	Х			
	Guillaume Lettre			Х	Х
	Rany M Salem				Х
	Michael C Turchin		Х		Х
QIMR (polygene analysis)	Andrew C Heath	Х		Х	
	Nick G Martin	Х	Х	Х	
	Grant W Montgomery	Х	Х		
	Dale R Nyholt	Х	Х		Х
	Peter M Visscher		Х		Х

2. ACKNOWLEDGMENTS

ADVANCE (Atherosclerotic Disease, VAscular FunctioN, and GenetiC Epidemiology) - The ADVANCE study was supported by the Donald W. Reynolds Foundation, the NIH (R01-HL087647), and the NHLBI (R01-HL087647).

AGES (Age, Gene/Environment Susceptibility-Reykjavik Study) - The AGES Reykjavik Study has been funded by NIH contracts N01-AG-12100 and Z01-AG-007380, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study is approved by the Icelandic National Bioethics Committee, (VSN: 00-063) and the Data Protection Authority. The researchers are indebted to the participants for their willingness to participate in the study.

Amish HAPI Heart Study (Amish Heredity and Phenotype Intervention Heart Study) - This work was supported by NIH research grants U01 HL72515, U01 GM074518, R01 HL088119, and U01 HL084756. Partial funding was also provided by the Mid-Atlantic Nutrition and Obesity Research Center of Maryland (P30 DK072488).

ARIC (Atherosclerosis Risk in Communities Study) - The ARIC Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, N01-HC-55022, R01HL087641, R01HL59367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. The project described was supported by Grant Number UL1 RR 025005 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) and NIH Roadmap for Medical Research, and its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH. The authors thank the staff and participants of the ARIC Study for their important contributions.

B58C-T1DGC (British 1958 birth cohort, Type 1 Diabetes Genetic Consortium controls) - This research utilizes resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), National Human Genome Research Institute (NHGRI), National Institute of Child Health and Human Development (NICHD), and Juvenile Diabetes Research Foundation International (JDRF) and supported by U01 DK062418. T1DGC GWAS data were deposited by the Diabetes & Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge (John Todd, Helen Stevens and Neil Walker) which is funded by the Juvenile Diabetes Research Foundation International, The National Institute for Health Research Cambridge Biomedical Research Centre and the Wellcome Trust (Strategic Award 079895). The British 1958 Birth Cohort collection is funded by the Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02.

B58C-WTCCC (British 1958 birth cohort, Wellcome Trust Case Control Consortium (WTCCC) controls) - We acknowledge use of genotypes and phenotypes from the British 1958 birth cohort collection, funded by the Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02.

BHS (Busselton Health Study) - The 1994-1995 Busselton Health Survey was funded by Healthway, Western Australia. The Busselton Health Studies are supported by the National Health and Medical Research Council of Australia and the Great Wine Estates Auctions. The BHS acknowledges the support of the Western Australian Genetic Epidemiology Resource and the Western Australian DNA Bank (both National Health and Medical Research Council of Australia Enabling Facilities).

BRIGHT (BTItish Genetic of HyperTension study) - The BRIGHT study is supported by the Medical Research Council of Great Britain (G9521010D) and the British Heart Foundation (PG/02/128). Genotyping was funded by the Wellcome Trust (grant number; 076113/B/04/Z) as part of The Wellcome Trust Case Control Consortium. This work forms part of the research themes contributing to the translational research portfolio of Barts and the London Cardiovascular Biomedical Research Unit which is supported and funded by the National Institute of Health Research. Toby Johnson was supported through a VIP award from the Wellcome Trust to Queen Mary University of London in the 2009/2010 academic year. The BRIGHT study is extremely grateful to all the patients who participated in the study and the BRIGHT nursing team.

CAD-WTCCC (WTCCC Coronary Artery Disease cases) - Collection of the CAD-WTCCC cases (BHF Family Heart Study) was funded by the British Heart Foundation and the Medical Research Council and genotyping by the Wellcome Trust as part of the WTCCC. We thanks members of the BHF Family Heart Study Research Group for recruitment. NJS holds a personal chair supported by the BHF and also holds a UK NIHR Senior Investigator Award.

CAPS (Cancer Prostate in Sweden) - The CAPS study was supported by grants from the Swedish Research Council, the Swedish Cancer Society, and the National Cancer Institute. E.I. was supported by grants from the Swedish Research Council, the Swedish Heart-Lung Foundation, the Swedish Society of Medicine, the Swedish Foundation for Strategic Research, and the Royal Swedish Academy of Science while working with this article.

CHS (Cardiovascular Health Study) - The CHS research reported in this article was supported by contract numbers N01-HC-85079 through N01-HC-85086, N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133, grant numbers U01 HL080295 and R01 HL087652 from the National Heart, Lung, and Blood Institute, R01AG031890, with additional contribution from the National Institute of Neurological Disorders and Stroke. A full list of principal CHS

investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. DNA handling and genotyping was supported in part by National Center for Research Resources grant M01RR00425 to the Cedars-Sinai General Clinical Research Center Genotyping core, National Institute of Diabetes and Digestive and Kidney Diseases grant DK063491 to the Southern California Diabetes Endocrinology Research Center, and the Cedars-Sinai Board of Governors' Chair in Medical Genetics (JIR).

CoLaus (Cohorte Lausannoise) - The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (33CSCO-122661). The authors thank Peter Vollenweider, Vincent Mooser and Dawn Waterworth, Co-PIs of the CoLaus study. Special thanks to Murielle Bochud, Yolande Barreau, Mathieu Firmann, Vladimir Mayor, Anne-Lise Bastian, Binasa Ramic, Martine Moranville, Martine Baumer, Marcy Sagette, Jeanne Ecoffey and Sylvie Mermoud for data collection. JSB is supported by the Centre Hospitalier Universitaire Vaudois and the University of Lausanne, Switzerland, the Swiss National Science Foundation (grants nb 310000-112552) and the European Union HEALTH-F4-2007-201550 HYPERGENES grant. SB is supported by the Giorgi-Cavaglieri Foundation, the Swiss National Science Foundation (grant 3100AO-116323/1), the Leenaards Foundation, the European Union HEALTH-F4-2007-201550 HYPERGENES grant and the Swiss Institute of Bioinformatics.

COROGENE (study of Genetic Predisposition of Coronary Heart Disease in Patients Verified with Coronary Angiogram) - Finnish Foundation for Cardiovascular Research Finnish Academy SALVE-program PUBGENSENS grant no 10404."

deCODE (deCODE genetics sample set) - deCODE authors would like to thank participants in deCODE cardiovascularand obesity studies and collaborators for their cooperation. We would also like to acknowledge the staff at the Clinical Research Centre (Iceland) and the deCODE Genetics biological materials and genotyping facilities for their work. The research performed at deCODE Genetics was part funded through the European Community's Seventh Framework Programme (FP7/2007-2013), ENGAGE project, grant agreement HEALTH-F4-2007- 201413.

DGI (Diabetes Genetics Initiative) - The Botnia (DGI) study have been supported by grants from Folkhälsan Research Foundation, Sigrid Juselius Foundation, Ministry of Education, Nordic Center of Excellence in Disease Genetics, Gyllenberg Foundation, Swedish Cultural Foundation in Finland, Finnish Diabetes Research Foundation, Foundation for Life and Health in Finland, Finnish Medical Society, Paavo Nurmi Foundation, Perklén Foundation, Ollqvist Foundation, Närpes Health Care Foundation, the Municipal Health Care Center and Hospital in Jakobstad, Health Care Centers in Vasa, Närpes and Korsholm. This work was also partially supported by NIH grant R01-DK075787 to JNH and by K23-DK080145 and F32-DK079466 to EKS.

EGCUT (Estonian Genome Center, University of Tartu) - EGCUT received support from FP7 grants ((201413 ENGAGE, 212111 BBMRI, 205419 ECOGENE, 245536 OPENGENE). EGCUT also received targeted financing from Estonian Government SF0180142s08 and from the European Union through the European Regional Development Fund, in the frame of Centre of Excellence in Genomics. EGC authors want to acknowledge EGCUT personnel, especially Ms. Merli Hass. The genotyping of the EGCUT samples were performed in Estonian Biocentre Genotyping Core Facility, EGC authors want to acknowledge Mr. Viljo Soo for their contribution in that. EGCUT data analyzes were carried out in part in the High Performance Computing Center of University of Tartu.

EPIC-Obesity (obesity cases and controls from the European Prospective Investigation into Cancer and Nutrition -Norfolk) - The EPIC Norfolk Study is funded by program grants from the Medical Research Council UK and Cancer Research UK. Genotyping of samples for the obesity cases and controls was carried out at the WT Sanger centre and was supported by the Wellcome Trust funding to Inês Barroso (grant 077016/Z/05/Z).

ERF (Erasmus Rucphen Family) (EUROSPAN) - The study was supported by grants from The Netherlands Organisation for Scientific Research (NWO), Erasmus MC, the Centre for Medical Systems Biology (CMSB) and EUROSPAN (European Special Populations Research Network) FP6 STRP grant number 018947 (LSHG-CT-2006-01947). We are grateful to all general practitioners for their contributions, to Petra Veraart for her help in genealogy, Jeannette Vergeer for the supervision of the laboratory work and Peter Snijders for his help in data collection.

Fenland (Fenland Study) - The Fenland Study is funded by the Wellcome Trust and the Medical Research Council, as well as by the Support for Science Funding programme and CamStrad. We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for help with recruitment. We thank the Fenland Study co-ordination team and the Field Epidemiology team of the MRC Epidemiology Unit for recruitment and clinical testing.

FHS (Family Heart Study) - The FHS is funded by a NHLBI grant R01-HL087700, and NIDDK grants R01-DK068336 and R01-DK075681.

FinGesture (Finnish Genetic Study of Arrhythmic Events) - We thank the study participants. We also thank Juhani Junttila, Kari Kaikkonen, and Marja-Leena Kortelainen for study concept and design, and data acquisition and interpretation. The FinGesture cohort is supported by the Juselius Foundation (Helsinki, Finland) and the Council of Health of the Academy of Finland (Helsinki, Finland). Authors would like to thank John D. Rioux, Sylvain Foisy, and Gabrielle Boucher for their contributions to the design, implementation and analysis of the GWA study of the FinGesture cohort. In addition, we would like to acknowledge the support of the Montreal Heart Institute Foundation.

FRAM (Framingham Heart Study) - This research was conducted in part using data and resources from the Framingham Heart Study of the National Heart Lung and Blood Institute of the National Institutes of Health and Boston University School of Medicine. The analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. This work was partially supported by the National Heart, Lung and Blood Institute's Framingham Heart Study (Contract No. N01-HC-25195) and its contract with Affymetrix, Inc for genotyping services (Contract No. N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center.

FTC (Finnish Twin Cohort) - Medical Research Fund of the Helsinki University Hospital, this project is supported by the European Commission under the programme 'Quality of Life and Management of the Living Resources' of 5th Framework Programme (no. QLG2-CT-2002-01254). This research was supported through funds from The European Community's Seventh Framework Programme (FP7/2007-2013), ENGAGE Consortium, grant agreement HEALTH-F4-2007-201413, Nordic Center of Excellence in Disease Genetics, Center of Excellence in Complex Disease Genetics of the Academy of Finland (grants 213506 and 129680). K.H. Pietiläinen was supported by grants from Yrjö Jahnsson, Jalmari and Rauha Ahokas, Biomedicum Helsinki and Novo Nordisk Foundations.

FUSION (Finland-United States Investigation of NIDDM Genetics) - Support for FUSION was provided by NIH grants DK062370 (to M.B.), DK072193 (to K.L.M.), T32 HG00040 (to T.M.T.), and K99-HL094535 (to C.J.W.), and intramural project number Z01-HG000024 (to F.S.C.), and an ADA Mentor-Based Postdoctoral Fellowship grant to M.B. K.L.M. is a Pew Scholar for the Biomedical Sciences. Genome-wide genotyping was conducted by the Johns Hopkins University Genetic Resources Core Facility SNP Center at the Center for Inherited Disease Research (CIDR), with support from CIDR NIH contract no. N01-HG65403.

GCI height extremes (Genomics Collaborative, Incorporated) - Genotyping and analysis were supported by March of Dimes grant 6-FY-09-507

Genmets (Health 2000 / GENMETS substudy) - This research was supported through funds from The European Community's Seventh Framework Programme (FP7/2007-2013), ENGAGE Consortium, grant agreement HEALTH-F4-2007-201413, Nordic Center of Excellence in Disease Genetics, Center of Excellence in Complex Disease Genetics of the Academy of Finland (grants 213506, 129494 and 129680).

GerMIFS I and GerMIFS II (German Myocardial Infarction Family Study I & II) - BMBF funded project Atherogenomics (FKZ: 01GS0831) and Cardiogenics integrated project (LSH-2006-037593) of the European Union

GOOD (Gothenburg Osteoporosis and Obesity Determinants Study) - Financial support was received from the Swedish Research Council, the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Emil and Vera Cornell Foundation, the Torsten and Ragnar Söderberg's Foundation, Petrus and Augusta Hedlunds Foundation, the Västra Götaland Foundation, the Göteborg Medical Society, and the Sahlgrenska Center for Cardiovascular and Metabolic Research (CMR, no. A305:188), which is supported by the Swedish Foundation for Strategic Research.

HBCS (Helsinki Birth Cohort Study) - Helsinki Birth Cohort Study has been supported by grants from the Academy of Finland, the Finnish Diabetes Research Society, Folkhälsan Research Foundation, Novo Nordisk Foundation, Finska Läkaresällskapet, Signe and Ane Gyllenberg Foundation.

HYPERGENES - HYPERGENES (European Network for Genetic-Epidemiological Studies: building a method to dissect complex genetic traits, using essential hypertension as a disease model) is a Large Cooperative Project funded by EU within the FP7 (HEALTH-F4-2007-201550). To HYPERGENES consortium took part: (1) University of Milano and Fondazione Filarete with Daniele Cusi. Project Coordinator. Fabio Macciardi co-PI. Cristina Barlassina. Erika Salvi. Cristian Cosentino. Sara Lupoli, Federica Torri, Maurizio Marconi, Gianna Petrini, Vincenzo Toschi, Simona Sitia, Giancarlo Mariotti, Maurizio Turiel; (2) University of Leuven, Division of Hypertension and Cardiovascular Rehabilitation, Department of Cardiovascular Diseases, with Robert Fagard, Yu Jin, Tatiana Kuznetsova, Tom Richart, Jan A. Staessen, and Lutgarde Thiis; (3) Jagiellonian University Medical College, Krakow, with Kalina Kawecka-Jaszcz, Katarzyna Stolarz-Skrzypek, Agnieszka Olszanecka, Wiktoria Wojciechowska, Małgorzata Kloch-Badełek; (4) IBM Israel – Science and Technology LTD, with Amnon Shabo, Ariel Frakash, Simona Cohen, Boaz Carmeli, Dan Pelleg, Michal Rosen-Zvi, Hani Neuvrith-Telem; (5) I.M.S. - Istituto di Management Sanitario S.r.l., Milan, with Pietro Conti, Costanza Conti, Mariella D'Alessio; (6) Institute of Internal Medicine, Siberian Branch of Russian Academy of Medical Science, Novosibirsk, with Yuri Nikitin, Galina Simonova, Sofia Malyutina, Elena Pello; (7) Imperial College of Science, Technology and Medicine, with Paolo Vineis and Clive J Hoggart; (8) INSERM -Institut National de la Santé et de la Recherche Médicale U772, with Xavier Jeunemaitre, Pierre-François Plouin, Michel Azizi (9) University of Warwick. Cardiovascular Medicine & Epidemiology Group, Clinical Sciences Research Institute, with Francesco P Cappuccio, Michelle A Miller, Chen Ji; (10) Università degli Studi di Sassari-AOU. Hypertension and Cardiovascular Prevention Centre, with Nicola Glorioso, Giuseppe Argiolas, Francesca Fau, Silvia Pitzoi, Emanuela Bulla, Roberta Zaninello, Patrizia Bulla, Simone Fadda, Gianclaudia Cappai, Siria Motroni, Chiara Maria Troffa; (11) STMICROELECTRONICS SRL, with Tony Barbuzzi; (12) University of Lausanne. Department of Medical Genetics, with Carlo Rivolta, Jacques S. Beckmann, Zoltan Kutalik, Paola Benaglio, Sven Bergmann, Murielle Bochud, Diana Marek, and

Peter Bastian; (13) Pharnext S.A.S., Paris, with Daniel Cohen and Ilya Chumakov; (14) Softeco Sismat Spa, Genova, with Enrico Morten; (15) Shanghai Institute of Hypertension, with Jiguang Wang and Li Yan; (16) Charles University in Prague. Department of Internal Medicine II, Pilsen, with Jan Filipovsky, Jitka Seidlerova, Otto Mayer Jr., Milena Dolejsova, Jana Hirmerova, Jana Strizova; (17) University of Padova, Department of Clinical and Experimental Medicine, with Edoardo Casiglia and Valérie Tikhonoff; (18) Medical University of Gdansk. Hypertension Unit, Department of Hypertension and Diabetology, with Krzysztof Narkiewicz, Marzena Chrostowska, Wojciech Sakiewicz, Michal Wojtowicz, Michal Hoffmann; (19) University Vita-Salute San Raffaele, with Paolo Manunta, Chiara Lanzani, Maria Teresa Sciarrone, Lorena Citterio, Laura Zagato, Giuseppe Bianchi. Regarding the present work, cases and controls were recruited within specific cohorts/networks: FLEMENGHO/EPOGH cohort (Coordinator J Staessen, contributors Units 2,3,6,16,17,18); Wandsworth Heart & Stroke Study (WHSS, Coordinator F Cappuccio, contributing Unit 9); Milano-Sassari cohort (coordinator D Cusi, contributors Units 1,10,19); SOPHIA cohort (coordinator N Glorioso, contributing Unit 10); (20) National Centre of Competence in Research "Frontiers in Genetics", University of Geneva, with Patrick Descombes.

KORA studies (Cooperative Health Research in the Region of Augsburg, KOoperative Gesundheitsforschung in der Region Augsburg) - We thank all study participants and would like to acknowledge the KORA (Cooperative Health Research in the Region of Augsburg) group. The KORA research platform was initiated and financed by the Helmholtz Center Munich, German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Part of this work was financed by the NIH subcontract from the Children's Hospital, Boston, US, (H.E.W., I.M.H, prime grant 1 R01 DK075787-01A1 to J.N.H.), the German National Genome Research Net NGFN2 and NGFNplus (01GS0823 to H.E.W), by MC Health - the Munich Center of Health Sciences as part of LMUinnovativ (H.E.W.), and by the Austrian GEN-AU-Programme "GOLD" to the Division of Genetic Epidemiology, Innsbruck Medical University. The LINUX platform for meta-analyses computations was funded by the Department of Epidemiology and Preventive Medicine at Regensburg University Medical Center.

MGS (Molecular Genetics of Schizophrenia/NIMH Repository Control Sample) - The Molecular Genetics of Schizophrenia project was carried out by 10 research sites and PIs: Pablo V. Gejman, Study Coordinator (NorthShore University Healthcare Research Institute, Evanston, IL), Douglas F. Levinson (Stanford University), Bryan J. Mowry (University of Queensland), Donald Black (University of Iowa), Robert Freedman (University of Colorado), C. Robert Cloninger (Washington University), Jeremy Silverman (Mt. Sinai Medical School), Nancy Buccola (Louisiana State University - New Orleans), William Byerley (University of California at San Francisco), and Farooq Amin (Emory University). This study was supported by NIH R01 grants (MH67257 to N.G.B., MH59588 to B.J.M., MH59571 to P.V.G., MH59565 to R.F., MH59587 to F.A., MH60870 to W.F.B., MH59566 to D.W.B., MH59586 to J.M.S., MH61675 to D.F.L., MH60879 to C.R.C., MH81800 to P.V.G., MH79469 to P.V.G., and MH79470 to D.F.L.), NARSAD (National Alliance for Research on Schizophrenia and Depression) Young Investigator Awards (to J.D. and A.R.S.), the Genetic Association Information Network (GAIN), the Walter E. Nichols, M.D., and Eleanor Nichols endowments, at Stanford University, and by The Paul Michael Donovan Charitable Foundation. Genotyping was carried out by the Genotyping and Analysis at the Broad Institute of Harvard and MIT (S. Gabriel and D.B.M.), which is supported by grant U54 RR020278 from the National Center for Research Resources. Genotyping of half of the control sample presented here was carried out with support from GAIN. The GAIN quality control team (G.R. Abecasis and J. Paschall) made important contributions to the project.

MICROS (EUROSPAN) - For the MICROS study, we thank the primary care practitioners Raffaela Stocker, Stefan Waldner, Toni Pizzecco, Josef Plangger, Ugo Marcadent and the personnel of the Hospital of Silandro (Department of Laboratory Medicine) for their participation and collaboration in the research project. In South Tyrol, the study was supported by the Ministry of Health and Department of Educational Assistance, University and Research of the Autonomous Province of Bolzano and the South Tyrolean Sparkasse Foundation.

MIGEN (Myocardial Infarction Genetics Consortium) - National Heart, Lung, and Blood Institute's STAMPEED genomics research program (R01 HL087676) and the National Center for Research Resources (U54 RR020278). This work was also partially supported by NIH grants K23-DK080145 and F32-DK079466 to EKS

NBS-WTCCC (WTCCC National Blood Service donors) - We acknowledge use of DNA from The UK Blood Services/Wellcome Trust collection of Common Controls (UKBS/WT collection), funded by the Wellcome Trust (grants 076113/C/04/Z and 084183/Z/07/Z) and by the National Institute for Health research. The collection was established as part of the Wellcome Trust Case Control Consortium.

NFBC1966 (Northern Finland 1966 Birth Cohort) - We thank Professor Paula Rantakallio (launch of NFBC1966 and initial data collection), Ms Sarianna Vaara (data collection), Ms Tuula Ylitalo (administration), Mr Markku Koiranen (data management), Ms Outi Tornwall and Ms Minttu Jussila (DNA biobanking). Financial support was received from the Academy of Finland (project grants 104781, 120315, 129269, and Center of Excellence in Complex Disease Genetics), University Hospital Oulu, Biocenter, University of Oulu, Finland (75617), the European Commission (EURO-BLCS, Framework 5 award QLG1-CT-2000-01643), NHLBI grant 5R01HL087679-02 through the STAMPEED program (1RL1MH083268-01), NIH/NIMH (5R01MH63706:02), ENGAGE project and grant agreement HEALTH-F4-2007-201413, and the Medical Research Council, UK (Grants G0500539, G0600331, PrevMetSyn). The DNA extractions, sample quality controls, biobank up-keeping and aliquotting were performed in the National Public Health Institute, Biomedicum Helsinki, Finland and supported financially by the Academy of Finland and Biocentrum Helsinki. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

NHS (The Nurses' Health Study) - The NHS is funded by the NIH (grants U01HG004399, DK58845, CA65725, CA87969, CA49449, CA67262, CA50385, U01CA098233, R01HL71981), and the Boston Obesity Nutrition Research Center (DK46200). We acknowledge the NHS participants for their contributions in making this study possible.

NSPHS (Northern Sweden Population Health Study) (EUROSPAN) - The Northern Swedish Population Health Study (NSPHS) was funded by the Swedish Medical Research Council (Project Number K2007-66X-20270-01-3) and the Foundation for Strategic Research (SSF). NSPHS as part of EUROSPAN (European Special Populations Research Network) was also supported by European Commission FP6 STRP grant number 01947 (LSHG-CT-2006-01947). We are grateful for the contribution of district nurse Svea Hennix for data collection and Inger Jonasson for logistics and coordination of the health survey. Finally, we would like to thank all the participants from the community for their interest and willingness to contribute to this study.

NTRNESDA (Netherlands Twin Register & the Netherlands Study of Depression and Anxiety) - Funding support was provided by the Netherlands Scientific Organization (904-61-090, 904-61-193, 480-04-004, 400-05-717, Center for Medical Systems Biology (NWO Genomics), SPI 56-464-1419); Neuroscience Campus Amsterdam and the EMGO+ institute; the European Union (EU/WLRT-2001-01254), ZonMW (Geestkracht program, 10-000-1002), NIMH (RO1 MH059160) and matching funds from participating institutes in NESDA and NTR. The genotyping of samples was provided through the Genetic Association Information Network (GAIN). The dataset(s) used for the analyses described in this manuscript were obtained from the database of Genotype and Phenotype (dbGaP) found at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000020.v2.p1.

ORCADES (Orkney Complex Disease Study) (EUROSPAN) - The Orkney Complex Disease Study (ORCADES) was supported by the Chief Scientist Office of the Scottish Government (grant no. CZB/4/276), the Royal Society and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). DNA extractions were performed at the Wellcome Trust Clinical Research Facility in Edinburgh. We would like to acknowledge the invaluable contributions of Lorraine Anderson and the research nurses in Orkney, the administrative team in Edinburgh and the people of Orkney.

PLCO (Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial) - This research was supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics and by contracts from the Division of Cancer Prevention, National Cancer Institute, NIH, DHHS. The authors thank Drs. Christine Berg and Philip Prorok of the Division of Cancer Prevention, National Cancer Institute, the screening center investigators and staff of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial, Mr. Tom Riley and staff at Information Management Services, Inc., Ms. Barbara O'Brien and staff at Westat, Inc., and the study participants for making this study possible.

Procardis (Precocious Coronary Artery Disease) The Procardis consortium was funded by EC Sixth Framework Programme (Procardis:LSHM-CT- 2007- 037273) and AstraZeneca AB. RC, MF and HW are supported by the British Heart Foundation Centre for Research Excellence; MF and HW acknowledge support from the Wellcome Trust; RC acknowledge support from the MRC; AH obtained support for this project from the Swedish Heart-Lung Foundation, the Swedish Medical Research Council (8691), the Knut and Alice Wallenberg Foundation, the Karolinska Institute and the Stockholm County Council (560183).

QIMR Polygene (Twins studies at the Queensland Instutite of Medical Research) We are grateful to the twins and their families for their generous participation in these studies. We would like to thank staff at the Queensland Institute of Medical Research: Dixie Statham, Ann Eldridge and Marlene Grace for sample collection, Anjali Henders, Megan Campbell, Lisa Bowdler, Steven Crooks and staff of the Molecular Epidemiology Laboratory for sample processing and preparation, Scott Gordon, Brian McEvoy, Belinda Cornes and Beben Benyamin for data QC and preparation, and David Smyth and Harry Beeby for IT support. We acknowledge funding from the Australian National Health and Medical Research Council (NHMRC grants 241944, 389875, 389891, 389892, 389938, 442915, 442981, 496739, 496688, 552485 and 613672), the U.S. National Institute of Health (grants AA07535, AA10248, AA014041, AA13320, AA13321, AA13326 and DA12854) and the Australian Research Council (ARC grant DP0770096).

RS (The Rotterdam Study) (GWA and replication studies) - The GWA study was funded by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012), the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Consortium for Healthy Aging (NCHA) project nr. 050-060-810. We thank Pascal Arp, Mila Jhamai, Dr Michael Moorhouse, Marijn Verkerk, and Sander Bervoets for their help in creating the GWAS database. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are very grateful to the participants and staff from the Rotterdam Study, the participating general practioners and the pharmacists. We would like to thank Dr. Tobias A. Knoch, Luc V. de Zeeuw, Anis Abuseiris, and Rob de Graaf as well as their institutions the Erasmus Computing Grid, Rotterdam, The Netherlands, and especially the national German MediGRID and Services@MediGRID part of the German D-Grid, both funded by the German Bundesministerium fuer Forschung und Technology under grants #01 AK 803 A-H and # 01 IG 07015 G for access to their grid resources.

RUNMC (The Nijmegen Bladder Cancer Study & The Nijmegen Biomedical Study) - Collection of samples and data in the RUNMC study was funded in part by the European Commission (POLYGENE: LSHC-CT-2005) and Radboud University Nijmegen Medical Centre.

SardiNIA - We thank all of the volunteers who participated in the study, Monsignore Piseddu, Bishop of Ogliastra, the mayors and citizens of the Sardinian towns (Lanusei, Ilbono, Arzana, and Elini), the head of the Public Health Unit ASL4 for their volunteerism and cooperation, and team of physicians, nurses and the recruitment personnel. Funding was provided by the National Institute on Aging, NIH (contracts NO1-AG12109 to the SardiNIA/ProgeNIA team; contract AG00675-03 to D.S, and contracts HG002651; HG005214, HG005581;HL084729; MH084698 and 263-MA-410953 to the University of Michigan (G.R.A)). G.R.A. is a Pew Scholar for the Biomedical Sciences.

SASBAC (Swedish And Singapore Breast Association Consortium) - The SASBAC study was supported by funding from the Agency for Science, Technology and Research of Singapore (A*STAR), the United States National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation.

SEARCH/UKOPS (Studies of Epidemiology and Risk factors in Cancer Heredity / UK Ovarian Cancer Population Study) - SEARCH is funded by a programme grant from Cancer Research UK. We thank Jonathan Morrison, Honglin Song, Paul Pharoah and the SEARCH team. UKOPS is funded by a grant from the Eve Appeal. We thank Simon Gayther, Susan Ramus and the UKOPS team.

SHIP (Study of Health in Pomerania) - SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania. Genome-wide data have been supported by the Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, Germany and the Federal State of Mecklenburg-West Pomerania. The University of Greifswald is a member of the 'Center of Knowledge Interchange' program of the Siemens AG. Data analyses were further supported by the DIAB Core project of the German Network of Diabetes.

Sorbs (Sorbs are self-contained population from Eastern Germany, European Descent) - Dr Knut Krohn, Microarray Core Facility of the Interdisciplinary Centre for Clinical Research (IZKF), University of Leipzig, Germany; grants from the German Research Council (KFO-152 to Michael Stumvoll) and from IZKF (B27 to Michael Stumvoll, Peter Kovacs and Anke Tönjes). The research of Dr. Inga Prokopenko is funded in part through the European Community's Seventh Framework Programme (FP7/2007-2013), ENGAGE project, grant agreement HEALTH-F4-2007- 201413. Dr. Reedik Mägi from the Wellcome Trust Centre for Human Genetics, University of Oxford, UK for data handling for this study.

T2D-WTCCC (WTCCC Type 2 Diabetes cases) - Research funding for sample collection, genotyping and data analysis for the T2D-WTCCC and other cohorts for which the Oxford group had responsibility came from the British Diabetes Association, BDA Research, Diabetes UK, Oxford NIHR Biomedical Research Centre, European Commission (ENGAGE: HEALTH-F4-2007-201413; EURODIA: LSHG-CT-2004-518153, Wellcome Trust (072960, 076113, 083270, 085301, 079557, 081682, 075491) UK Medical Research Council (G0000649, G0601261) and NIDDK (R01-DK-073490). In addition, Cecilia Lindgren is funded by WT086596/Z/08/Z (Wellcome Trust Research Career Development Fellowship); Reedik Mägi is funded by European Commission under the Marie Curie Intra-European Fellowship; Andrew Morris is funded by WT081682/Z/06/Z (Wellcome Trust Senior Research Fellowship); Mark McCarthy receives personal funding from the Oxford NIHR Biomedical Research Centre.

TwinsUK - The study was funded by the Wellcome Trust (Grant ref. 079771); European Community's Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-F2-2008-ENGAGE and the European Union FP-5 GenomEUtwin Project (QLG2-CT-2002-01254) and Framework 6 Project EUroClot. The study also receives support from the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy's & St Thomas' NHS Foundation Trust in partnership with King's College London. We thank the staff from the TwinsUK, the DNA Collections and Genotyping Facilities at the Wellcome Trust Sanger Institute for sample preparation; Quality Control of the Twins UK cohort for genotyping (in particular Amy Chaney, Radhi Ravindrarajah, Douglas Simpkin, Cliff Hinds, and Thomas Dibling); Paul Martin and Simon Potter of the DNA and Genotyping Informatics teams for data handling; Le Centre National de Génotypage, France, led by Mark Lathrop, for genotyping; Duke University, North Carolina, USA, led by David Goldstein, for genotyping; and the Finnish Institute of Molecular Medicine, Finnish Genome Center, University of Helsinki, led by Aarno Palotie. Nicole Soranzo acknowledges financial support from the Wellcome Trust (Grant 091746/Z/10/Z).

VIS (EUROSPAN) and KORCULA - The studies in the Croatian islands were supported through the grants from the Medical Research Council UK to H.C., A.F.W. and I.R.; and Ministry of Science, Education and Sport of the Republic of Croatia to I.R. (number 216-1080315-0302). The authors collectively thank a large number of individuals for their individual help in organizing, planning and carrying out the field work related to the project and data management: Professor Pavao Rudan and the staff of the Institute for Anthropological Research in Zagreb, Croatia (organization of the field work, anthropometric and physiological measurements, and DNA extraction in Vis); Professor Ariana Vorko-Jovic and the staff and medical students of the Andrija Stampar School of Public Health of the Faculty of Medicine, University of Zagreb, Croatia (questionnaires, genealogical reconstruction and data entry); Dr Branka Salzer from the biochemistry lab "Salzer", Croatia (measurements of biochemical traits); local general practitioners and nurses (recruitment and communication with the study population); and the employees of several other Croatian institutions who participated in the field work, including but not limited to the University

of Rijeka, Croatia; Croatian Institute of Public Health; Institutes of Public Health in Split and Dubrovnik, Croatia. SNP Genotyping of the Vis samples was carried out by the Genetics Core Laboratory at the Wellcome Trust Clinical Research Facility, WGH, Edinburgh, Scotland.

WGHS (Women's Genome Health Study) - The WGHS is funded by the Donald W. Reynolds Foundation (Las Vegas, NV), the Fondation LeDucq (Paris, France), the National Heart, Lung and Blood Institute (NHLBI; HL043851 and HL69757) and the National Cancer Institute (NCI; CA047988). Funding for genotyping and collaborative scientific support was provided by Amgen.

YFS (The Cardiovascular Risk in Young Finns Study) - Academy of Finland (grant no. 117797, 121584 and 126925), the Social Insurance Institution of Finland, University Hospital Medical funds to Tampere, and Turku University Hospitals, the Finnish Foundation of Cardiovascular Research.