Run bmass
on a set of phenotypes that each have
univariate GWAS statistics on the same set of SNPs
bmass(DataSources, GWASsnps = NULL, SNPMarginalUnivariateThreshold = 1e-06, SNPMarginalMultivariateThreshold = 1e-06, GWASThreshFlag = TRUE, GWASThreshValue = 5e-08, NminThreshold = 0, PrintMergedData = FALSE, PrintProgress = FALSE, ...)
DataSources | A string indicating the variable names of the input datafiles and phenotypes. No default value. |
---|---|
GWASsnps | A data.table containing rows of SNPs that were
univariate genome-wide significant in the phenotypes being used for
analysis; |
SNPMarginalUnivariateThreshold | A numerical value indicating
the univariate p-value threshold to use when collecting marginally
significant SNPs for final |
SNPMarginalMultivariateThreshold | A numerical value
indicating the basic multivariate p-value threshold to use when
collecting marginally significant SNPs for final |
GWASThreshFlag | A logical |
GWASThreshValue | A numerical value indicating the univariate
p-value threshold to use in conjunction with the |
NminThreshold | A numerical value that indicates a sample size
threshold to use where SNPs below which are removed. Default is
|
PrintMergedData | A logical |
PrintProgress | A logical |
... | Additional optional arguments. |
A list containing model, SNP, and posterior information for
both the previously significant univariate SNPs (PreviousSNPs
)
and the newly significant multivariate SNPs (NewSNPs
). For a
full breakdown of the bmass
output list structure, please see
the associated vignettes.
bmass(c("HDL","LDL","TG","TC"), GWASsnps, NminThreshold = 50000)
bmass(c("HDL","LDL","TG","TC"), GWASsnps, GWASThreshValue = 1e-8,
NminThreshold = 50000, PrintProgress = TRUE)
bmass(c("HDL", "LDL", "TG", "TC"), GWASsnps, GWASThreshFlag = FALSE,
SNPMarginalUnivariateThreshold = 1e-4,
SNPMarginalMultivariateThreshold = 1e-4,
PrintMergedData = TRUE)
bmassOutput <- bmass(c("HDL","LDL","TG","TC"),
GWASsnps, NminThreshold = 50000)
Phenotypes <- c("bmass_SimulatedData1", "bmass_SimulatedData2") bmassOutput <- bmass(Phenotypes, bmass_SimulatedSigSNPs) summary(bmassOutput)#> Length Class Mode #> MarginalSNPs 3 -none- list #> PreviousSNPs 4 -none- list #> NewSNPs 3 -none- list #> LogFile 19 -none- character #> ZScoresCorMatrix 4 -none- numeric #> Models 18 -none- numeric #> ModelPriors 126 -none- numeric #> GWASlogBFMinThreshold 1 -none- numericbmassOutput$NewSNPs$SNPs#> ChrBP Chr BP Marker MAF A1 bmass_SimulatedData1_A2 #> 9 4_7000 4 7000 rs8 0.15 G C #> bmass_SimulatedData1_Direction bmass_SimulatedData1_pValue #> 9 + 7e-08 #> bmass_SimulatedData1_N bmass_SimulatedData1_ZScore #> 9 2514 5.391171 #> bmass_SimulatedData2_Direction bmass_SimulatedData2_pValue #> 9 - 6e-08 #> bmass_SimulatedData2_N bmass_SimulatedData2_ZScore GWASannot mvstat #> 9 2514 -5.418801 0 145.0667 #> mvstat_log10pVal unistat unistat_log10pVal Nmin logBFWeightedAvg #> 9 31.50084 29.36341 7.221849 2514 29.107